A non-invasive diabetes diagnosis method based on novel scleral imaging instrument and AI

糖尿病 医学 人口 人工智能 计算机科学 环境卫生 内分泌学
作者
Wenqi Lv,Rongxin Fu,Xue Lin,Ya Su,Xiangyu Jin,Yi Han,Xiuming Shan,Wenli Du,Kai Jiang,Yucong Lin,Guanwen Huang
标识
DOI:10.1117/12.2601222
摘要

Type 2 diabetes mellitus is one of the most common metabolic diseases in the world. However, frequent blood glucose testing causes continual harm to diabetics, which cannot meet the needs of early diagnosis and long-term tracking of diabetes. Thus non-invasive adjuvant diagnosis methods are urgently needed, enabling early screening of the population for diabetes, the evaluation of diabetes risk, and assessment of therapeutic effects. The human eye plays an important role in painless and non-invasive approaches, because it is considered an internal organ but can be easily be externally observed. We developed an AI model to predict the probability of diabetes from scleral images taken by a specially developed instrument, which could conveniently and quickly collect complete scleral images in four directions and perform artificial intelligence (AI) analysis in 3 min without any reagent consumption or the need for a laboratory. The novel optical instrument could adaptively eliminate reflections and collected shadow-free scleral images. 177 subjects were recruited to participate in this experiment, including 127 benign subjects and 50 malignant subjects. The blood sample and sclera images from each subject was obtained. The scleral image classification model achieved a mean AUC over 0.85, which indicates great potential for early screening of practical diabetes during periodic physical checkups or daily family health monitoring. With this AI scleral features imaging and analysis method, diabetic patients’ health conditions can be rapidly, noninvasively, and accurately analyzed, which offers a platform for noninvasive forecasting, early diagnosis, and long-term monitoring for diabetes and its complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助mo采纳,获得10
刚刚
时尚的八宝粥给时尚的八宝粥的求助进行了留言
刚刚
迢迢万里发布了新的文献求助10
刚刚
花花完成签到,获得积分10
刚刚
1秒前
sweettroye发布了新的文献求助10
1秒前
耍酷花卷发布了新的文献求助10
1秒前
1秒前
1秒前
晓晓晓完成签到,获得积分10
1秒前
金甲狮王完成签到,获得积分10
2秒前
3秒前
Jun应助superstard采纳,获得20
3秒前
3秒前
Jenny发布了新的文献求助30
4秒前
4秒前
YC2完成签到,获得积分10
5秒前
5秒前
HXuer发布了新的文献求助10
6秒前
6秒前
five完成签到,获得积分10
6秒前
7秒前
lllydia给lllydia的求助进行了留言
7秒前
tongttt发布了新的文献求助10
7秒前
Yve关注了科研通微信公众号
8秒前
薰硝壤应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
云瑾应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得50
8秒前
小二郎应助科研通管家采纳,获得10
9秒前
nice完成签到 ,获得积分10
9秒前
CWNU_HAN应助科研通管家采纳,获得30
9秒前
kk完成签到,获得积分10
9秒前
云瑾应助科研通管家采纳,获得10
9秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919