亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge

脱水 人工神经网络 污水污泥 工艺工程 环境科学 工程类 污水处理 废物管理 计算机科学 人工智能 岩土工程
作者
Mariusz Kowalczyk,Tomasz Kamizela
出处
期刊:Energies [MDPI AG]
卷期号:14 (6): 1552-1552 被引量:6
标识
DOI:10.3390/en14061552
摘要

Mechanical dewatering is a key process in the management of sewage sludge. However, the drainage efficiency depends on a number of factors, from the type and dose of the conditioning agent to the parameters of the drainage device. The selection of appropriate methods and parameters of conditioning and dewatering of sewage sludge is the task of laboratory work. This work can be accelerated through the use of artificial neural network (ANNs). The paper discusses the possibilities of using ANNs in predicting the dewatering efficiency of physically conditioned sludge. The input variables were only four parameters characterizing the conditioning methods and the dewatering method by centrifugation. These were the dose of the sludge skeleton builders (cement, gypsum, fly ash, and liquid glass), sonication parameters (sonication amplitude and time), and relative centrifugal force. Dewatering efficiency parameters such as sludge hydration and separation factor were output variables. Due to the nature of the research problem, two nonlinear networks were selected: a multilayer perceptron and a radial neural network. Based on the results of the prediction of artificial neural networks, it was found that these networks can be used to forecast the effectiveness of municipal sludge dewatering. The prediction error did not exceed 1.0% of the real value. ANN can therefore be useful in optimizing the dewatering process. In the case of the conducted research, it was the optimization of the sludge dewatering efficiency as a function of the type and parameters of conditioning factors. Therefore, it is possible to predict the dewatering efficiency of sludge that has not been tested in the laboratory, for example, with the use of other doses of physical conditioner. However, the condition for correct prediction and optimization was the use of a large dataset in the neural network training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
YMY发布了新的文献求助10
2秒前
科目三应助从容保温杯采纳,获得10
7秒前
prince完成签到,获得积分20
15秒前
李爱国应助自信富采纳,获得10
17秒前
Zhang完成签到,获得积分10
18秒前
清爽达完成签到 ,获得积分10
21秒前
24秒前
28秒前
活泼新儿完成签到 ,获得积分10
28秒前
28秒前
orixero应助Newky采纳,获得10
29秒前
wish完成签到 ,获得积分10
31秒前
123发布了新的文献求助10
32秒前
YMY完成签到,获得积分20
36秒前
所所应助rune采纳,获得10
37秒前
大方的火龙果完成签到 ,获得积分10
39秒前
43秒前
简单文博发布了新的文献求助10
48秒前
zxq1996完成签到 ,获得积分10
49秒前
杨森omg发布了新的文献求助10
51秒前
1分钟前
1分钟前
今夕何夕完成签到,获得积分10
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得30
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Yuppies发布了新的文献求助10
1分钟前
yueyue发布了新的文献求助10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
开心完成签到 ,获得积分10
1分钟前
1分钟前
prince发布了新的文献求助10
1分钟前
慕青应助简单文博采纳,获得10
1分钟前
kbj完成签到,获得积分10
1分钟前
共享精神应助nenoaowu采纳,获得10
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Association Between Clozapine Exposure and Risk of Hematologic Malignancies in Veterans With Schizophrenia 850
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298641
求助须知:如何正确求助?哪些是违规求助? 2933718
关于积分的说明 8464469
捐赠科研通 2606682
什么是DOI,文献DOI怎么找? 1423397
科研通“疑难数据库(出版商)”最低求助积分说明 661593
邀请新用户注册赠送积分活动 645120