Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge

脱水 人工神经网络 污水污泥 工艺工程 环境科学 工程类 污水处理 废物管理 计算机科学 人工智能 岩土工程
作者
Mariusz Kowalczyk,Tomasz Kamizela
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 1552-1552 被引量:6
标识
DOI:10.3390/en14061552
摘要

Mechanical dewatering is a key process in the management of sewage sludge. However, the drainage efficiency depends on a number of factors, from the type and dose of the conditioning agent to the parameters of the drainage device. The selection of appropriate methods and parameters of conditioning and dewatering of sewage sludge is the task of laboratory work. This work can be accelerated through the use of artificial neural network (ANNs). The paper discusses the possibilities of using ANNs in predicting the dewatering efficiency of physically conditioned sludge. The input variables were only four parameters characterizing the conditioning methods and the dewatering method by centrifugation. These were the dose of the sludge skeleton builders (cement, gypsum, fly ash, and liquid glass), sonication parameters (sonication amplitude and time), and relative centrifugal force. Dewatering efficiency parameters such as sludge hydration and separation factor were output variables. Due to the nature of the research problem, two nonlinear networks were selected: a multilayer perceptron and a radial neural network. Based on the results of the prediction of artificial neural networks, it was found that these networks can be used to forecast the effectiveness of municipal sludge dewatering. The prediction error did not exceed 1.0% of the real value. ANN can therefore be useful in optimizing the dewatering process. In the case of the conducted research, it was the optimization of the sludge dewatering efficiency as a function of the type and parameters of conditioning factors. Therefore, it is possible to predict the dewatering efficiency of sludge that has not been tested in the laboratory, for example, with the use of other doses of physical conditioner. However, the condition for correct prediction and optimization was the use of a large dataset in the neural network training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Chenq1nss发布了新的文献求助10
1秒前
小熊冲冲完成签到,获得积分10
1秒前
彭于晏应助韵寒采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
赵怡宁发布了新的文献求助10
3秒前
许志森发布了新的文献求助10
4秒前
在水一方应助plasma采纳,获得10
4秒前
huohuo完成签到,获得积分10
4秒前
光影相生应助细腻曼冬采纳,获得10
4秒前
哈哈哈哈哈~完成签到,获得积分10
5秒前
nn发布了新的文献求助10
5秒前
悦耳的淇完成签到,获得积分10
6秒前
筱灬发布了新的文献求助10
6秒前
7秒前
Nana发布了新的文献求助10
7秒前
Peter完成签到,获得积分10
8秒前
早柚日常犯困完成签到,获得积分20
9秒前
纸鸢发布了新的文献求助10
10秒前
11秒前
赵怡宁完成签到,获得积分10
11秒前
11秒前
12秒前
布洛芬发布了新的文献求助10
12秒前
时尚的闭月完成签到 ,获得积分10
13秒前
Chenq1nss完成签到,获得积分10
13秒前
钩子89完成签到,获得积分10
13秒前
yyyyyy完成签到,获得积分10
13秒前
坚强冰蝶完成签到,获得积分10
13秒前
14秒前
过氧化氢发布了新的文献求助30
14秒前
勤劳dandan发布了新的文献求助30
14秒前
14秒前
wanci应助早柚日常犯困采纳,获得10
15秒前
16秒前
LYY发布了新的文献求助10
16秒前
妮妮完成签到,获得积分10
17秒前
米羊发布了新的文献求助10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958850
求助须知:如何正确求助?哪些是违规求助? 3505102
关于积分的说明 11122496
捐赠科研通 3236558
什么是DOI,文献DOI怎么找? 1788899
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802794