亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge

脱水 人工神经网络 污水污泥 工艺工程 环境科学 工程类 污水处理 废物管理 计算机科学 人工智能 岩土工程
作者
Mariusz Kowalczyk,Tomasz Kamizela
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:14 (6): 1552-1552 被引量:6
标识
DOI:10.3390/en14061552
摘要

Mechanical dewatering is a key process in the management of sewage sludge. However, the drainage efficiency depends on a number of factors, from the type and dose of the conditioning agent to the parameters of the drainage device. The selection of appropriate methods and parameters of conditioning and dewatering of sewage sludge is the task of laboratory work. This work can be accelerated through the use of artificial neural network (ANNs). The paper discusses the possibilities of using ANNs in predicting the dewatering efficiency of physically conditioned sludge. The input variables were only four parameters characterizing the conditioning methods and the dewatering method by centrifugation. These were the dose of the sludge skeleton builders (cement, gypsum, fly ash, and liquid glass), sonication parameters (sonication amplitude and time), and relative centrifugal force. Dewatering efficiency parameters such as sludge hydration and separation factor were output variables. Due to the nature of the research problem, two nonlinear networks were selected: a multilayer perceptron and a radial neural network. Based on the results of the prediction of artificial neural networks, it was found that these networks can be used to forecast the effectiveness of municipal sludge dewatering. The prediction error did not exceed 1.0% of the real value. ANN can therefore be useful in optimizing the dewatering process. In the case of the conducted research, it was the optimization of the sludge dewatering efficiency as a function of the type and parameters of conditioning factors. Therefore, it is possible to predict the dewatering efficiency of sludge that has not been tested in the laboratory, for example, with the use of other doses of physical conditioner. However, the condition for correct prediction and optimization was the use of a large dataset in the neural network training process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开霁完成签到 ,获得积分10
刚刚
1秒前
11完成签到 ,获得积分10
2秒前
桐桐应助Hanzoe采纳,获得10
9秒前
12秒前
15秒前
65A97a发布了新的文献求助10
17秒前
27秒前
andrele完成签到,获得积分10
27秒前
28秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
英姑应助科研通管家采纳,获得10
36秒前
37秒前
yz123完成签到,获得积分10
38秒前
39秒前
39秒前
41秒前
42秒前
43秒前
yyyg发布了新的文献求助10
44秒前
漂亮的天宇完成签到 ,获得积分10
44秒前
44秒前
难过的钥匙完成签到 ,获得积分10
45秒前
Hanzoe发布了新的文献求助10
47秒前
Owen应助稳重的宛丝采纳,获得10
49秒前
秋日思语完成签到,获得积分10
49秒前
lyp完成签到 ,获得积分10
51秒前
敬骞发布了新的文献求助10
51秒前
眼睛大的尔竹完成签到 ,获得积分10
52秒前
CodeCraft应助秋日思语采纳,获得30
53秒前
54秒前
55秒前
minomous完成签到,获得积分10
57秒前
lin.xy完成签到,获得积分10
59秒前
白小白发布了新的文献求助10
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610666
求助须知:如何正确求助?哪些是违规求助? 4016498
关于积分的说明 12435370
捐赠科研通 3698166
什么是DOI,文献DOI怎么找? 2039273
邀请新用户注册赠送积分活动 1072120
科研通“疑难数据库(出版商)”最低求助积分说明 955796