Artificial Neural Networks in Modeling of Dewaterability of Sewage Sludge

脱水 人工神经网络 污水污泥 工艺工程 环境科学 工程类 污水处理 废物管理 计算机科学 人工智能 岩土工程
作者
Mariusz Kowalczyk,Tomasz Kamizela
出处
期刊:Energies [MDPI AG]
卷期号:14 (6): 1552-1552 被引量:6
标识
DOI:10.3390/en14061552
摘要

Mechanical dewatering is a key process in the management of sewage sludge. However, the drainage efficiency depends on a number of factors, from the type and dose of the conditioning agent to the parameters of the drainage device. The selection of appropriate methods and parameters of conditioning and dewatering of sewage sludge is the task of laboratory work. This work can be accelerated through the use of artificial neural network (ANNs). The paper discusses the possibilities of using ANNs in predicting the dewatering efficiency of physically conditioned sludge. The input variables were only four parameters characterizing the conditioning methods and the dewatering method by centrifugation. These were the dose of the sludge skeleton builders (cement, gypsum, fly ash, and liquid glass), sonication parameters (sonication amplitude and time), and relative centrifugal force. Dewatering efficiency parameters such as sludge hydration and separation factor were output variables. Due to the nature of the research problem, two nonlinear networks were selected: a multilayer perceptron and a radial neural network. Based on the results of the prediction of artificial neural networks, it was found that these networks can be used to forecast the effectiveness of municipal sludge dewatering. The prediction error did not exceed 1.0% of the real value. ANN can therefore be useful in optimizing the dewatering process. In the case of the conducted research, it was the optimization of the sludge dewatering efficiency as a function of the type and parameters of conditioning factors. Therefore, it is possible to predict the dewatering efficiency of sludge that has not been tested in the laboratory, for example, with the use of other doses of physical conditioner. However, the condition for correct prediction and optimization was the use of a large dataset in the neural network training process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
年轻绮波完成签到,获得积分10
3秒前
3秒前
清新的幼旋完成签到,获得积分10
3秒前
4秒前
迷惘墨香完成签到,获得积分10
4秒前
fossil关注了科研通微信公众号
5秒前
量子星尘发布了新的文献求助10
5秒前
Jasper应助想喝奶茶采纳,获得10
6秒前
六芒星完成签到,获得积分10
6秒前
学术骗子小刚完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
廿二完成签到,获得积分10
9秒前
陆驳发布了新的文献求助10
9秒前
呜哈哈完成签到 ,获得积分10
11秒前
11秒前
11秒前
儒雅的战斗机完成签到,获得积分10
13秒前
喵了个咪发布了新的文献求助10
13秒前
汉堡包应助amanda采纳,获得10
14秒前
Sinner完成签到,获得积分10
14秒前
标致爆米花完成签到 ,获得积分10
14秒前
小任性完成签到,获得积分10
15秒前
小红书求接接接接一篇完成签到,获得积分10
16秒前
郑浚杳发布了新的文献求助30
16秒前
金j发布了新的文献求助10
17秒前
17秒前
18秒前
海城好人完成签到,获得积分10
18秒前
谢小盟举报失眠成协求助涉嫌违规
19秒前
20秒前
21秒前
积极问晴完成签到,获得积分10
21秒前
陈龙发布了新的文献求助10
22秒前
袁科研完成签到,获得积分10
22秒前
养鸟的人完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812