Metrological Characterization of a Pain Detection System Based on Transfer Entropy of Facial Landmarks

人工智能 计算机科学 计算机视觉 模式识别(心理学) 熵(时间箭头) 测量不确定度
作者
Paola Casti,Arianna Mencattini,Joanna Filippi,Michele D'Orazio,Maria Colomba Comes,Davide Di Giuseppe,Eugenio Martinelli
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-8
标识
DOI:10.1109/tim.2021.3067611
摘要

Pain is an alert state of the human body that can be conveyed to the external world through different modalities. A possible communication channel for human pain is represented by facial expressions, whose role in social interactions has been well established. In this work, the link between pain and transfer entropy (TE), passing through facial expressions, is investigated. A new approach to the vision-based measurement (VBM) of pain is presented, which is based on TE among the time-series of facial landmarks positions. The system is composed of three main blocks: A VBM block for the automatic landmarking and the generation of the time-series from the video-sequences; a second block for the evaluation of TE; and finally a classification model based on machine learning algorithms for pain assessment. A public database of video sequences of patients experiencing pain in a controlled scenario was used for the characterization of the system in terms of accuracy and precision. Different uncertainty contributions related to realistic signals interruptions and fluctuations were modeled and propagated to provide a comprehensive evaluation of the proposed measurement system. The obtained results indicate that TE-based approaches can provide great benefits in automatic pain assessment, opening new perspectives for remote management of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助念一采纳,获得10
刚刚
刚刚
1秒前
111122223发布了新的文献求助30
1秒前
2秒前
yhh发布了新的文献求助10
2秒前
JamesPei应助典雅的俊驰采纳,获得10
3秒前
6秒前
游一发布了新的文献求助10
6秒前
1056720198发布了新的文献求助10
6秒前
未du发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
小豹子完成签到,获得积分10
7秒前
酷波er应助bailubailing采纳,获得20
8秒前
8秒前
你好完成签到,获得积分10
8秒前
大个应助阿静采纳,获得10
9秒前
9秒前
10秒前
11秒前
11秒前
机灵水卉发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
美亲发布了新的文献求助10
13秒前
13秒前
13秒前
大胆的飞荷完成签到,获得积分10
13秒前
16秒前
16秒前
健忘的曼青完成签到,获得积分20
16秒前
林摆摆完成签到,获得积分10
16秒前
CodeCraft应助zg采纳,获得10
17秒前
17秒前
wait发布了新的文献求助10
17秒前
深林狼发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助30
18秒前
创不可贴发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243