Exploring Volatile Organic Compounds in Breath for High-Accuracy Prediction of Lung Cancer

肺癌 医学 呼气 混淆 内科学 放射科
作者
Ping‐Hsien Tsou,Zong-Lin Lin,Yu-Chiang Pan,Hui-Chen Yang,Chien‐Jen Chang,Sheng‐Kai Liang,Yueh‐Feng Wen,Chia‐Hao Chang,Lih‐Yu Chang,Kai‐Lun Yu,Chia-Jung Liu,Li‐Ta Keng,Meng‐Rui Lee,Jen‐Chung Ko,Guan‐Hua Huang,Yaw‐Kuen Li
出处
期刊:Cancers [MDPI AG]
卷期号:13 (6): 1431-1431 被引量:65
标识
DOI:10.3390/cancers13061431
摘要

(1) Background: Lung cancer is silent in its early stages and fatal in its advanced stages. The current examinations for lung cancer are usually based on imaging. Conventional chest X-rays lack accuracy, and chest computed tomography (CT) is associated with radiation exposure and cost, limiting screening effectiveness. Breathomics, a noninvasive strategy, has recently been studied extensively. Volatile organic compounds (VOCs) derived from human breath can reflect metabolic changes caused by diseases and possibly serve as biomarkers of lung cancer. (2) Methods: The selected ion flow tube mass spectrometry (SIFT-MS) technique was used to quantitatively analyze 116 VOCs in breath samples from 148 patients with histologically confirmed lung cancers and 168 healthy volunteers. We used eXtreme Gradient Boosting (XGBoost), a machine learning method, to build a model for predicting lung cancer occurrence based on quantitative VOC measurements. (3) Results: The proposed prediction model achieved better performance than other previous approaches, with an accuracy, sensitivity, specificity, and area under the curve (AUC) of 0.89, 0.82, 0.94, and 0.95, respectively. When we further adjusted the confounding effect of environmental VOCs on the relationship between participants’ exhaled VOCs and lung cancer occurrence, our model was improved to reach 0.92 accuracy, 0.96 sensitivity, 0.88 specificity, and 0.98 AUC. (4) Conclusion: A quantitative VOCs databank integrated with the application of an XGBoost classifier provides a persuasive platform for lung cancer prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背书强完成签到 ,获得积分10
1秒前
0713发布了新的文献求助10
3秒前
wezb完成签到 ,获得积分10
5秒前
小花小宝和阿飞完成签到 ,获得积分10
7秒前
7秒前
开心的人杰完成签到,获得积分10
9秒前
黑面包发布了新的文献求助10
13秒前
chrysan完成签到,获得积分10
14秒前
bwbw完成签到 ,获得积分10
17秒前
25秒前
丢硬币的小孩完成签到,获得积分10
27秒前
时林完成签到,获得积分10
27秒前
李凤凤完成签到 ,获得积分10
27秒前
Alone离殇完成签到 ,获得积分10
32秒前
风车完成签到 ,获得积分10
37秒前
bing完成签到,获得积分10
38秒前
轩辕寄风完成签到,获得积分10
38秒前
dajiejie完成签到 ,获得积分10
39秒前
43秒前
风信子deon01完成签到,获得积分10
43秒前
英俊延恶发布了新的文献求助50
47秒前
Minjalee完成签到,获得积分0
47秒前
FFFFF完成签到 ,获得积分0
47秒前
xiao完成签到 ,获得积分10
47秒前
xx完成签到,获得积分10
48秒前
Metx完成签到 ,获得积分10
50秒前
林谷雨完成签到 ,获得积分10
51秒前
YiWei完成签到 ,获得积分10
51秒前
安静笑晴完成签到,获得积分10
51秒前
伶俐的语雪完成签到,获得积分10
52秒前
shuyu完成签到 ,获得积分10
56秒前
latiao99应助wuyouwuyou采纳,获得20
59秒前
米博士完成签到,获得积分10
1分钟前
wfjsnd完成签到,获得积分10
1分钟前
1分钟前
机智的锦程完成签到 ,获得积分10
1分钟前
Tysonqu完成签到,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
1分钟前
专注友儿完成签到,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555881
求助须知:如何正确求助?哪些是违规求助? 3131483
关于积分的说明 9391179
捐赠科研通 2831164
什么是DOI,文献DOI怎么找? 1556402
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890