Deep-learning approach for caries detection and segmentation on dental bitewing radiographs

医学 射线照相术 分割 卷积神经网络 人工智能 牙科 深度学习 临床实习 口腔颌面外科 放射科 计算机科学 家庭医学
作者
İ̇brahim Şevki Bayrakdar,Kaan Orhan,Serdar Akarsu,Özer Çelik,Samet Atasoy,Adem Pekince,Yasin Yaşa,Elif Bilgir,Hande Sağlam,Ahmet Faruk Aslan,Alper Odabaş
出处
期刊:Oral Radiology [Springer Science+Business Media]
卷期号:38 (4): 468-479 被引量:45
标识
DOI:10.1007/s11282-021-00577-9
摘要

ObjectivesThe aim of this study is to recommend an automatic caries detection and segmentation model based on the Convolutional Neural Network (CNN) algorithms in dental bitewing radiographs using VGG-16 and U-Net architecture and evaluate the clinical performance of the model comparing to human observer.MethodsA total of 621 anonymized bitewing radiographs were used to progress the Artificial Intelligence (AI) system (CranioCatch, Eskisehir, Turkey) for the detection and segmentation of caries lesions. The radiographs were obtained from the Radiology Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Ordu University. VGG-16 and U-Net implemented with PyTorch models were used for the detection and segmentation of caries lesions, respectively.ResultsThe sensitivity, precision, and F-measure rates for caries detection and caries segmentation were 0.84, 0.81; 0.84, 0.86; and 0.84, 0.84, respectively. Comparing to 5 different experienced observers and AI models on external radiographic dataset, AI models showed superiority to assistant specialists.ConclusionCNN-based AI algorithms can have the potential to detect and segmentation of dental caries accurately and effectively in bitewing radiographs. AI algorithms based on the deep-learning method have the potential to assist clinicians in routine clinical practice for quickly and reliably detecting the tooth caries. The use of these algorithms in clinical practice can provide to important benefit to physicians as a clinical decision support system in dentistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷的冰真应助6260采纳,获得30
刚刚
Chen发布了新的文献求助10
刚刚
yu777完成签到,获得积分10
刚刚
1秒前
奚斌完成签到,获得积分10
2秒前
泡泡糖与一世安完成签到,获得积分10
2秒前
魔芋完成签到,获得积分10
2秒前
安详的三颜完成签到 ,获得积分10
2秒前
JX发布了新的文献求助10
4秒前
4秒前
华仔应助li采纳,获得10
5秒前
李健应助忆枫采纳,获得10
5秒前
Z2WWS32发布了新的文献求助10
5秒前
赵成龙发布了新的文献求助10
6秒前
7秒前
简单发布了新的文献求助10
8秒前
doctorZY完成签到,获得积分10
9秒前
情怀应助宿亮东采纳,获得10
9秒前
万能图书馆应助宿亮东采纳,获得10
9秒前
科研通AI2S应助猴猴采纳,获得10
9秒前
李爱国应助dild采纳,获得10
10秒前
10秒前
电致阿光完成签到,获得积分10
10秒前
怕黑的静蕾应助梦比优斯采纳,获得10
11秒前
李健的小迷弟应助Ti采纳,获得10
11秒前
12秒前
烟花应助yy采纳,获得10
12秒前
无花果应助灵巧阑香采纳,获得10
12秒前
gao完成签到,获得积分10
13秒前
pwq发布了新的文献求助10
15秒前
wanci应助干净怀寒采纳,获得30
15秒前
JX完成签到,获得积分10
16秒前
16秒前
leec应助sopha采纳,获得20
18秒前
18秒前
19秒前
爆米花应助xielunwen采纳,获得10
19秒前
传奇3应助义气绿柳采纳,获得10
19秒前
笨笨松发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421