Deep-learning approach for caries detection and segmentation on dental bitewing radiographs

医学 射线照相术 分割 卷积神经网络 人工智能 牙科 深度学习 临床实习 口腔颌面外科 放射科 计算机科学 家庭医学
作者
İ̇brahim Şevki Bayrakdar,Kaan Orhan,Serdar Akarsu,Özer Çelik,Samet Atasoy,Adem Pekince,Yasin Yaşa,Elif Bilgir,Hande Sağlam,Ahmet Faruk Aslan,Alper Odabaş
出处
期刊:Oral Radiology [Springer Nature]
卷期号:38 (4): 468-479 被引量:45
标识
DOI:10.1007/s11282-021-00577-9
摘要

ObjectivesThe aim of this study is to recommend an automatic caries detection and segmentation model based on the Convolutional Neural Network (CNN) algorithms in dental bitewing radiographs using VGG-16 and U-Net architecture and evaluate the clinical performance of the model comparing to human observer.MethodsA total of 621 anonymized bitewing radiographs were used to progress the Artificial Intelligence (AI) system (CranioCatch, Eskisehir, Turkey) for the detection and segmentation of caries lesions. The radiographs were obtained from the Radiology Archive of the Department of Oral and Maxillofacial Radiology of the Faculty of Dentistry of Ordu University. VGG-16 and U-Net implemented with PyTorch models were used for the detection and segmentation of caries lesions, respectively.ResultsThe sensitivity, precision, and F-measure rates for caries detection and caries segmentation were 0.84, 0.81; 0.84, 0.86; and 0.84, 0.84, respectively. Comparing to 5 different experienced observers and AI models on external radiographic dataset, AI models showed superiority to assistant specialists.ConclusionCNN-based AI algorithms can have the potential to detect and segmentation of dental caries accurately and effectively in bitewing radiographs. AI algorithms based on the deep-learning method have the potential to assist clinicians in routine clinical practice for quickly and reliably detecting the tooth caries. The use of these algorithms in clinical practice can provide to important benefit to physicians as a clinical decision support system in dentistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gxy发布了新的文献求助10
1秒前
雪白语海完成签到 ,获得积分10
1秒前
1秒前
Kelly发布了新的文献求助10
1秒前
SciGPT应助吱吱采纳,获得10
3秒前
在水一方应助花开富贵采纳,获得10
4秒前
valentin完成签到,获得积分10
5秒前
雪山飞龙发布了新的文献求助30
5秒前
zz发布了新的文献求助10
5秒前
guo发布了新的文献求助10
5秒前
6秒前
萧水白应助xuexi采纳,获得10
6秒前
Dskelf发布了新的文献求助10
7秒前
莫妮卡.宾完成签到,获得积分10
8秒前
朗月完成签到 ,获得积分20
9秒前
10秒前
10秒前
南小琴完成签到,获得积分10
10秒前
11秒前
隐形曼青应助认真的果汁采纳,获得30
11秒前
11秒前
12秒前
CodeCraft应助李李李采纳,获得10
12秒前
12秒前
12秒前
12秒前
所所应助qqq采纳,获得10
13秒前
13秒前
13秒前
路旁小白发布了新的文献求助10
15秒前
SciGPT应助唠叨的月光采纳,获得10
15秒前
16秒前
清嘉发布了新的文献求助10
16秒前
16秒前
wanci应助满满阳光采纳,获得30
17秒前
吱吱发布了新的文献求助10
17秒前
李爱国应助dej采纳,获得30
17秒前
xy发布了新的文献求助20
18秒前
我爱学术发布了新的文献求助10
18秒前
刻苦的荆发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150003
求助须知:如何正确求助?哪些是违规求助? 2801002
关于积分的说明 7843063
捐赠科研通 2458575
什么是DOI,文献DOI怎么找? 1308544
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721