Intelligent Fault Diagnosis Method for Gear Transmission Systems Based on Improved Multi-Scale Reverse Dispersion Entropy and Swarm Decomposition

断层(地质) 计算机科学 群体行为 熵(时间箭头) 模式识别(心理学) 算法 特征向量 支持向量机 特征(语言学) 人工智能 工程类 哲学 地质学 地震学 物理 量子力学 语言学
作者
Hongwei Wang,Wenlei Sun,Li He,Jianxing Zhou
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-13 被引量:17
标识
DOI:10.1109/tim.2021.3115207
摘要

Based on the non-stationary and non-linear acceleration signals, a rapid data-driven method for fault diagnosis in gear transmission systems, which is based on swarm decomposition (SWD) algorithm, improved multi-scale reverse dispersion entropy (improved MRDE) algorithm, and bidirectional long short-term memory (Bi-LSTM) network, is proposed. First, every segment in the original signals is decomposed into several oscillatory components (OCs) with simple fault information by the SWD algorithm. Second, the proposed improved MRDE algorithm is adopted to further extract the features of the original signal and the decomposed signals under different scale factors, and the features are combined into a next bigger feature vector. Finally, the datasets composed of feature vectors are divided into train and test datasets to train and validate the Bi-LSTM network, so as to recognize and classify different fault signals intelligently. The proposed method of fault diagnosis in this article is verified by the signals under different types of faults are collected from the wind turbine drivetrain diagnostics simulator (WTDDS). And the results of the experiment show that it can recognize and classify the types of gear transmission system's fault diagnosis quickly and accurately, and has its advantages in stability, determination, and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wzzhhh发布了新的文献求助10
2秒前
NexusExplorer应助江峰采纳,获得10
3秒前
是风动完成签到 ,获得积分10
3秒前
彭于晏应助wzzhhh采纳,获得10
5秒前
yzw完成签到,获得积分10
6秒前
木木一心完成签到,获得积分10
6秒前
小辣椒发布了新的文献求助10
7秒前
传奇3应助鳗鱼饭采纳,获得10
7秒前
遇上就这样吧应助TianYue778采纳,获得60
7秒前
ArronZ完成签到,获得积分10
11秒前
12秒前
传奇3应助江峰采纳,获得10
16秒前
我给植物浇生理盐水完成签到,获得积分20
16秒前
17秒前
共享精神应助失眠的雅琴采纳,获得10
17秒前
aero完成签到 ,获得积分10
20秒前
23秒前
幸运星完成签到,获得积分10
24秒前
25秒前
开心夜云完成签到,获得积分10
26秒前
27秒前
周星星发布了新的文献求助10
28秒前
29秒前
31秒前
烟波钓客完成签到,获得积分10
31秒前
31秒前
稳重发布了新的文献求助10
32秒前
cwj完成签到,获得积分10
32秒前
seannnnnnn完成签到 ,获得积分10
33秒前
dang完成签到,获得积分10
33秒前
小米发布了新的文献求助10
34秒前
seannnnnnn关注了科研通微信公众号
37秒前
dang发布了新的文献求助10
37秒前
37秒前
科研通AI5应助资白玉采纳,获得10
38秒前
40秒前
科研通AI2S应助海豚采纳,获得10
40秒前
42秒前
欣欣完成签到,获得积分10
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738850
求助须知:如何正确求助?哪些是违规求助? 3282273
关于积分的说明 10028265
捐赠科研通 2998982
什么是DOI,文献DOI怎么找? 1645682
邀请新用户注册赠送积分活动 782882
科研通“疑难数据库(出版商)”最低求助积分说明 750067