A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems

元启发式 计算机科学 模棱两可 软件部署 管理科学 基于搜索的软件工程 透明度(行为) 领域(数学) 算法 数据科学 运筹学 软件工程 软件 软件开发 计算机安全 工程类 经济 软件开发过程 程序设计语言 纯数学 数学
作者
Eneko Osaba,Esther Villar-Rodríguez,Javier Del Ser,Antonio J. Nebro,Daniel Molina,Antonio LaTorre,Ponnuthurai Nagaratnam Suganthan,Carlos A. Coello Coello,Francisco Herrera
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:64: 100888-100888 被引量:219
标识
DOI:10.1016/j.swevo.2021.100888
摘要

In the last few years, the formulation of real-world optimization problems and their efficient solution via metaheuristic algorithms has been a catalyst for a myriad of research studies. In spite of decades of historical advancements on the design and use of metaheuristics, large difficulties still remain in regards to the understandability, algorithmic design uprightness, and performance verifiability of new technical achievements. A clear example stems from the scarce replicability of works dealing with metaheuristics used for optimization, which is often infeasible due to ambiguity and lack of detail in the presentation of the methods to be reproduced. Additionally, in many cases, there is a questionable statistical significance of their reported results. This work aims at providing the audience with a proposal of good practices which should be embraced when conducting studies about metaheuristics methods used for optimization in order to provide scientific rigor, value and transparency. To this end, we introduce a step by step methodology covering every research phase that should be followed when addressing this scientific field. Specifically, frequently overlooked yet crucial aspects and useful recommendations will be discussed in regards to the formulation of the problem, solution encoding, implementation of search operators, evaluation metrics, design of experiments, and considerations for real-world performance, among others. Finally, we will outline important considerations, challenges, and research directions for the success of newly developed optimization metaheuristics in their deployment and operation over real-world application environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心的文涛关注了科研通微信公众号
1秒前
jscr发布了新的文献求助10
3秒前
3秒前
3秒前
优雅狗完成签到,获得积分10
4秒前
粗犷的沛容应助研友_ndDGVn采纳,获得20
4秒前
2032jia完成签到,获得积分10
5秒前
Hello应助syl采纳,获得10
5秒前
ouo完成签到 ,获得积分10
5秒前
善学以致用应助澈千子采纳,获得10
6秒前
爱静静应助闪闪尔白采纳,获得10
8秒前
The one完成签到,获得积分10
10秒前
Tao122发布了新的文献求助10
10秒前
wangjun完成签到,获得积分10
11秒前
彭于晏应助林子青采纳,获得10
11秒前
上官若男应助吴雨峰采纳,获得10
11秒前
12秒前
Hello应助YY采纳,获得10
13秒前
Akim应助pp‘s采纳,获得10
14秒前
Jasper应助sugarballer采纳,获得10
14秒前
时倾发布了新的文献求助10
15秒前
15秒前
Metbutterly完成签到,获得积分10
16秒前
pkjsx完成签到,获得积分10
18秒前
20秒前
20秒前
欣喜石头发布了新的文献求助10
22秒前
Tao122完成签到,获得积分10
22秒前
25秒前
科研通AI2S应助细心的文涛采纳,获得10
25秒前
熊二浪发布了新的文献求助10
25秒前
小琥同学发布了新的文献求助10
26秒前
zhouzhou发布了新的文献求助10
27秒前
29秒前
29秒前
29秒前
31秒前
吴雨峰发布了新的文献求助10
33秒前
Herolee发布了新的文献求助200
33秒前
学术小白完成签到,获得积分10
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171046
求助须知:如何正确求助?哪些是违规求助? 2821953
关于积分的说明 7937363
捐赠科研通 2482414
什么是DOI,文献DOI怎么找? 1322504
科研通“疑难数据库(出版商)”最低求助积分说明 633656
版权声明 602627