已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Joint Traffic Signal and Connected Vehicle Control in IoV via Deep Reinforcement Learning

计算机科学 强化学习 人工智能
作者
Zixin Wang,Hanyu Zhu,Yong Zhou,Xiliang Luo
标识
DOI:10.1109/wcnc49053.2021.9417262
摘要

In this paper, we propose to exploit the interconnection in the Internet of Vehicles (IoV) to realize efficient traffic network control, which is indispensable in building intelligent transportation systems (ITS). In addition to control the traffic signals as in conventional traffic network control schemes, we propose to control the detouring behavior of the connected vehicles as well, with an objective to further enhance the traffic efficiency. Specifically, we formulate the joint traffic signal and connected vehicle control problem as a reinforcement learning (RL) problem, the action and state spaces of which are specifically designed to take into account the connected vehicles. To characterize the detouring behavior of the connected vehicles while keeping the decision process simple, we introduce a new concept termed as detouring ratio, which is defined as the fraction of connected vehicles that detour. Moreover, we also design an effective rewarding mechanism that takes into account the impact of the detouring on the network traffic efficiency. By utilizing tools from deep RL, we put forward an efficient algorithm to jointly control the traffic signals and the connected vehicles. Numerical results demonstrate the validity of our proposed models and show that the proposed joint control algorithm can significantly enhance the network traffic efficiency in terms of the travel time and the waiting time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狗宅完成签到 ,获得积分10
1秒前
3秒前
星辰大海应助THEEVE采纳,获得10
4秒前
4秒前
4秒前
打打应助东郭寻凝采纳,获得10
5秒前
5秒前
6秒前
澜澜完成签到,获得积分20
7秒前
幽默不愁发布了新的文献求助10
8秒前
JamesYang发布了新的文献求助30
10秒前
Boook发布了新的文献求助10
10秒前
风的忧伤完成签到,获得积分20
11秒前
Kevin完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
13秒前
英姑应助既晓采纳,获得10
13秒前
浦肯野应助Biu采纳,获得50
13秒前
充电宝应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
xiaowang完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
ccc完成签到 ,获得积分10
20秒前
佳远发布了新的文献求助10
22秒前
Keria发布了新的文献求助10
22秒前
既晓发布了新的文献求助10
23秒前
布丁发布了新的文献求助10
23秒前
26秒前
27秒前
meidi123完成签到,获得积分10
28秒前
29秒前
qiao发布了新的文献求助10
31秒前
33秒前
leilei发布了新的文献求助10
34秒前
34秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471228
求助须知:如何正确求助?哪些是违规求助? 3064103
关于积分的说明 9087449
捐赠科研通 2754912
什么是DOI,文献DOI怎么找? 1511625
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698404