Identification of a New DNA Aptamer by Tissue-SELEX for Cancer Recognition and Imaging

适体 指数富集配体系统进化 癌症 肝癌 核酸 化学 DNA 癌细胞 分子生物学 癌症研究 计算生物学 生物化学 病理 生物 核糖核酸 遗传学 医学 基因
作者
Lie Li,Jun Wan,Xiaohong Wen,Qiuping Guo,Huishan Jiang,Jie Wang,Yazhou Ren,Kemin Wang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (19): 7369-7377 被引量:39
标识
DOI:10.1021/acs.analchem.1c01445
摘要

Cancer has become one of the most common diseases with high mortality in humans. Early and accurate diagnosis of cancer is of great significance to enhance the survival rate of patients. Therefore, effective molecular ligands capable of selectively recognizing cancer are urgently needed. In this work, we identified a new DNA aptamer named SW1 by tissue-based systematic evolution of ligands by exponential enrichment (tissue-SELEX), in which cancerous liver tissue sections were used as the positive control and adjacent normal liver tissue sections were used as the negative control. Taking immobilized liver cancer SMMC-7721 cells as the research object, aptamer SW1 exhibited excellent affinity with a Kd value of 123.62 ± 17.53 nM, and its binding target was preliminarily determined as a non-nucleic acid substance in the nucleus. Moreover, tissue imaging results showed that SW1 explicitly recognized cancerous liver tissues with a high detection rate of 72.7% but displayed a low detection rate to adjacent normal tissues. In addition to liver cancer cells and tissues, aptamer SW1 has been demonstrated to recognize various other types of cancer cells and tissues. Furthermore, SW1-A, an optimized aptamer of SW1, maintained its excellent affinity toward liver cancer cells and tissues. Collectively, these results indicate that SW1 possesses great potential for use as an effective molecular probe for clinical diagnosis of cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ssss完成签到,获得积分10
1秒前
感谢DMSO转发科研通微信,获得积分50
1秒前
汉堡包应助梦幻采纳,获得10
2秒前
小小旭呀发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
星辰大海应助十三儿采纳,获得10
4秒前
不再选择完成签到,获得积分10
4秒前
5秒前
6秒前
林快点完成签到,获得积分10
6秒前
小曾发布了新的文献求助30
8秒前
JJ发布了新的文献求助10
8秒前
感谢皮毛柔软的猫转发科研通微信,获得积分50
8秒前
等待秋尽完成签到,获得积分20
9秒前
西奥发布了新的文献求助10
9秒前
10秒前
hsj123123发布了新的文献求助10
11秒前
wjq20001002发布了新的文献求助50
11秒前
感谢patience转发科研通微信,获得积分50
12秒前
灰太狼完成签到,获得积分10
12秒前
丸子完成签到 ,获得积分10
13秒前
SciGPT应助NXK采纳,获得10
14秒前
clhfio完成签到,获得积分10
14秒前
夕诙发布了新的文献求助30
14秒前
yym发布了新的文献求助10
14秒前
等待静枫关注了科研通微信公众号
14秒前
zkwgly发布了新的文献求助10
15秒前
15秒前
感谢姚姚转发科研通微信,获得积分50
15秒前
15秒前
15秒前
大个应助Fan采纳,获得10
16秒前
感谢赖成文转发科研通微信,获得积分50
18秒前
NexusExplorer应助汪汪采纳,获得10
19秒前
muyangsiyuan完成签到,获得积分10
20秒前
感谢Cpp转发科研通微信,获得积分50
20秒前
cdercder应助西奥采纳,获得10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814