A deep learning‐based method for detecting and classifying the ultrasound images of suspicious thyroid nodules

甲状腺结节 计算机辅助设计 人工智能 甲状腺 深度学习 放射科 计算机科学 计算机辅助诊断 人口 甲状腺癌 活检 医学 机器学习 模式识别(心理学) 内科学 工程类 工程制图 环境卫生
作者
Zijian Zhao,Congmin Yang,Qian Wang,Huawei Zhang,Linlin Shi,Zhiwen Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7959-7970 被引量:12
标识
DOI:10.1002/mp.15319
摘要

The incidence of thyroid cancer has significantly increased in the last few decades. However, diagnosis of the thyroid nodules is labor and time intensive for radiologists and strongly depends on the personal experience of the radiologists. In this pursuit, the present study envisaged to develop a deep learning-based computer-aided diagnosis (CAD) method that enabled the automatic detection and classification of suspicious thyroid nodules in order to reduce the unnecessary fine-needle aspiration biopsy.The CAD method consisted of two main parts: detecting the location of thyroid nodules using a multiscale detection network and classifying the detected thyroid nodules by an attention-based classification network.The performance of the proposed method was evaluated and compared with that of other state-of-the-art deep learning methods and experienced radiologists. The proposed detection method outperformed three other detection architectures (average precision, 82.1% vs. 78.3%, 77.2%, and 74.8%). Moreover, the classification method showed a superior performance compared with four other state-of-the-art classification networks (accuracy, 94.8% vs. 91.2%, 85.0%, 80.8%, and 72.1%) and that by experienced radiologists (mean value of area under the curve, 0.941 vs. 0.833).Our study verified the high efficiency of the proposed detection method. The findings can help improve the diagnostic performance of radiologists. However, the developed CAD system requires more training and evaluation in a large-population study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助李菲采纳,获得10
刚刚
充电宝应助学道采纳,获得10
刚刚
一夜寒秋完成签到 ,获得积分10
1秒前
开朗的榴莲完成签到,获得积分10
1秒前
1秒前
1秒前
干爆瓶颈完成签到,获得积分10
2秒前
姜姜完成签到 ,获得积分20
2秒前
辛普森发布了新的文献求助10
2秒前
panjy发布了新的文献求助30
2秒前
哭泣旭尧完成签到,获得积分10
3秒前
徐徐徐应助热情的戾采纳,获得10
3秒前
向上发布了新的文献求助30
3秒前
zike完成签到,获得积分10
4秒前
4秒前
隐形曼青应助刘维尼采纳,获得10
4秒前
调皮草莓完成签到,获得积分10
4秒前
5秒前
6秒前
杨帆完成签到,获得积分10
6秒前
星辰大海应助NNN采纳,获得10
6秒前
7秒前
依依发布了新的文献求助10
7秒前
emma完成签到 ,获得积分10
7秒前
luke17743508621完成签到,获得积分0
9秒前
1111发布了新的文献求助10
10秒前
10秒前
10秒前
cfsyyfujia完成签到 ,获得积分10
11秒前
ding应助yu采纳,获得10
11秒前
JamesPei应助辛普森采纳,获得10
11秒前
bkagyin应助文艺的冬卉采纳,获得10
11秒前
222发布了新的文献求助10
12秒前
李纪磊发布了新的文献求助10
14秒前
14秒前
沉默黑米应助NA采纳,获得10
15秒前
15秒前
15秒前
yyz关闭了yyz文献求助
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144133
求助须知:如何正确求助?哪些是违规求助? 2795764
关于积分的说明 7816509
捐赠科研通 2451813
什么是DOI,文献DOI怎么找? 1304705
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419