A deep learning‐based method for detecting and classifying the ultrasound images of suspicious thyroid nodules

甲状腺结节 计算机辅助设计 人工智能 甲状腺 深度学习 放射科 计算机科学 计算机辅助诊断 人口 甲状腺癌 活检 医学 机器学习 模式识别(心理学) 内科学 工程制图 工程类 环境卫生
作者
Zijian Zhao,Congmin Yang,Qian Wang,Huawei Zhang,Linlin Shi,Zhiwen Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7959-7970 被引量:14
标识
DOI:10.1002/mp.15319
摘要

The incidence of thyroid cancer has significantly increased in the last few decades. However, diagnosis of the thyroid nodules is labor and time intensive for radiologists and strongly depends on the personal experience of the radiologists. In this pursuit, the present study envisaged to develop a deep learning-based computer-aided diagnosis (CAD) method that enabled the automatic detection and classification of suspicious thyroid nodules in order to reduce the unnecessary fine-needle aspiration biopsy.The CAD method consisted of two main parts: detecting the location of thyroid nodules using a multiscale detection network and classifying the detected thyroid nodules by an attention-based classification network.The performance of the proposed method was evaluated and compared with that of other state-of-the-art deep learning methods and experienced radiologists. The proposed detection method outperformed three other detection architectures (average precision, 82.1% vs. 78.3%, 77.2%, and 74.8%). Moreover, the classification method showed a superior performance compared with four other state-of-the-art classification networks (accuracy, 94.8% vs. 91.2%, 85.0%, 80.8%, and 72.1%) and that by experienced radiologists (mean value of area under the curve, 0.941 vs. 0.833).Our study verified the high efficiency of the proposed detection method. The findings can help improve the diagnostic performance of radiologists. However, the developed CAD system requires more training and evaluation in a large-population study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
juice完成签到,获得积分10
刚刚
刚刚
duou发布了新的文献求助10
1秒前
2秒前
2秒前
sky123321发布了新的文献求助10
3秒前
3秒前
科目三应助够苟采纳,获得10
3秒前
科研通AI6应助陈子豪采纳,获得10
3秒前
4秒前
5秒前
wsy完成签到,获得积分10
5秒前
minkuuuuuuu应助憨憨兔子采纳,获得10
5秒前
6秒前
7秒前
amin发布了新的文献求助10
7秒前
科研小工发布了新的文献求助10
8秒前
Orange应助jiajia采纳,获得10
8秒前
8秒前
风清扬发布了新的文献求助10
8秒前
彬彬发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
yy应助科研通管家采纳,获得10
9秒前
散热发布了新的文献求助10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
wuuToiiin应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
小猴子应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
916应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536474
求助须知:如何正确求助?哪些是违规求助? 4624146
关于积分的说明 14590801
捐赠科研通 4564532
什么是DOI,文献DOI怎么找? 2501843
邀请新用户注册赠送积分活动 1480597
关于科研通互助平台的介绍 1451838