掺杂剂
分子内力
材料科学
钙钛矿(结构)
结晶度
纳米技术
非共价相互作用
钝化
能量转换效率
光电子学
兴奋剂
分子
化学
结晶学
立体化学
复合材料
有机化学
氢键
图层(电子)
作者
Kun Yang,Qiaogan Liao,Jun Huang,Zilong Zhang,Mengyao Su,Zhicai Chen,Ziang Wu,Dong Wang,Ziwei Lai,Han Young Woo,Yan Cao,Peng Gao,Xugang Guo
标识
DOI:10.1002/anie.202113749
摘要
Intramolecular noncovalent interactions (INIs) have served as a powerful strategy for accessing organic semiconductors with enhanced charge transport properties. Herein, we apply the INI strategy for developing dopant-free hole-transporting materials (HTMs) by constructing two small-molecular HTMs featuring an INI-integrated backbone for high-performance perovskite solar cells (PVSCs). Upon incorporating noncovalent S⋅⋅⋅O interaction into their simple-structured backbones, the resulting HTMs, BTORA and BTORCNA, showed self-planarized backbones, tuned energy levels, enhanced thermal properties, appropriate film morphology, and effective defect passivation. More importantly, the high film crystallinity enables the materials with substantial hole mobilities, thus rendering them as promising dopant-free HTMs. Consequently, the BTORCNA-based inverted PVSCs delivered a power conversion efficiency of 21.10 % with encouraging long-term device stability, outperforming the devices based on BTRA without S⋅⋅⋅O interaction (18.40 %). This work offers a practical approach to designing charge transporting layers with high intrinsic mobilities for high-performance PVSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI