An active learning framework improves tumor variant interpretation

色素性干皮病 计算生物学 计算机科学 多路复用 生物标志物 机器学习 人工智能 精密医学
作者
Alexandra M Blee,Bian Li,T J Pecen,Jens Meiler,Zachary D. Nagel,John A. Capra,Walter J. Chazin
出处
期刊:bioRxiv
标识
DOI:10.1101/2021.11.08.467747
摘要

For precision medicine to reach its full potential for treatment of cancer and other diseases, protein variant effect prediction tools are needed that characterize variants of unknown significance (VUS) in a patient's genome with respect to their likelihood to influence treatment response and outcomes. However, the performance of most variant prediction tools is limited by the difficulty of acquiring sufficient training and validation data. To overcome these limitations, we applied an iterative active learning approach starting from available biochemical, evolutionary, and functional annotations. The potential of active learning to improve variant interpretation was first demonstrated by applying it to synthetic and deep mutational scanning (DMS) datasets for four cancer-relevant proteins. We then probed its utility to guide interpretation and functional validation of tumor VUS in a potential biomarker for cancer therapy sensitivity, the nucleotide excision repair (NER) protein Xeroderma Pigmentosum Complementation Group A (XPA). A quantitative high-throughput cell-based NER activity assay, fluorescence-based multiplex flow-cytometric host cell reactivation (FM-HCR), was used to validate XPA VUS selected by the active learning strategy. In all cases, selecting VUS for validation by active learning yielded an improvement in performance over traditional learning. These analyses suggest that active learning is well-suited to significantly improve interpretation of VUS and cancer patient genomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助WTaMi采纳,获得10
刚刚
李李发布了新的文献求助10
1秒前
xiaowang完成签到,获得积分20
1秒前
Anany发布了新的文献求助10
1秒前
鹿lu完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
水悟子完成签到,获得积分10
3秒前
4秒前
orbitvox完成签到,获得积分10
6秒前
粽子发布了新的文献求助30
6秒前
所所应助李李采纳,获得10
7秒前
自由宛筠发布了新的文献求助10
7秒前
迷人雪一发布了新的文献求助10
8秒前
研友_VZG7GZ应助谢逸轩采纳,获得10
9秒前
科研通AI2S应助潇洒的布偶采纳,获得10
9秒前
9秒前
充电宝应助清风采纳,获得10
10秒前
wyp应助大机灵采纳,获得10
12秒前
发发发完成签到,获得积分10
13秒前
机智友蕊完成签到 ,获得积分10
13秒前
嘿嘿嘿完成签到,获得积分20
13秒前
13秒前
14秒前
FashionBoy应助zz采纳,获得10
14秒前
14秒前
机灵的鲜花完成签到,获得积分10
15秒前
15秒前
研友_LX7478完成签到,获得积分10
15秒前
热水泡jio发布了新的文献求助10
17秒前
小蘑菇应助自由宛筠采纳,获得10
18秒前
19秒前
Koi发布了新的文献求助10
19秒前
陈酒发布了新的文献求助10
19秒前
欧阳正义发布了新的文献求助10
20秒前
20秒前
NexusExplorer应助热水泡jio采纳,获得10
24秒前
24秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498