二硫苏糖醇
秀丽隐杆线虫
蛋白质稳态
毒性
蛋氨酸
内质网
未折叠蛋白反应
蛋氨酸合酶
生物化学
化学
同型半胱氨酸
细胞生物学
生物
作者
G Gokul,Jogender Singh
标识
DOI:10.1101/2021.11.16.468906
摘要
The redox reagent dithiothreitol (DTT) causes stress in the endoplasmic reticulum (ER) by disrupting its oxidative protein folding environment, which results in the accumulation and misfolding of the newly synthesized proteins. DTT may potentially impact cellular physiology by ER-independent mechanisms; however, such mechanisms remain poorly characterized. Using the nematode model Caenorhabditis elegans, here we show that DTT toxicity is modulated by the bacterial diet. Specifically, the dietary component vitamin B12 alleviates DTT toxicity in a methionine synthase-dependent manner. Using a forward genetic screen, we identify that loss-of-function of R08E5.3, an S-adenosylmethionine (SAM)-dependent methyltransferase, imparts resistance to DTT. DTT upregulates R08E5.3 expression and modulates the activity of the methionine-homocysteine cycle. Employing genetic studies, we show that DTT toxicity is a result of the depletion of SAM. Finally, we show that a functional IRE-1/XBP-1 unfolded protein response pathway is required to counteract toxicity at high, but not low, DTT concentrations.
科研通智能强力驱动
Strongly Powered by AbleSci AI