Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods

太赫兹辐射 计算机科学 人工智能 光电子学 物理
作者
Zsuzsanna Koczor-Benda,Alexandra Boehmke,Angelos Xomalis,Rakesh Arul,Charlie Readman,Jeremy J. Baumberg,Edina Rosta
出处
期刊:Physical Review X [American Physical Society]
卷期号:11 (4) 被引量:6
标识
DOI:10.1103/physrevx.11.041035
摘要

The molecular requirements are explored for achieving efficient signal up-conversion in a recently developed technique for terahertz (THz) detection based on molecular optomechanics. We discuss which molecular and spectroscopic properties are most important for predicting efficient THz detection and outline a computational approach based on quantum-chemistry and machine-learning methods for calculating these properties. We validate this approach by bulk and surface-enhanced Raman scattering and infrared absorption measurements. We develop a virtual screening methodology performed on databases of millions of commercially available compounds. Quantum-chemistry calculations for about 3000 compounds are complemented by machine-learning methods to predict applicability of 93 000 organic molecules for detection. Training is performed on vibrational spectroscopic properties based on absorption and Raman scattering intensities. Our top molecules have conversion intensity two orders of magnitude higher than an average molecule from the database. We also discuss how other properties like molecular shape and self-assembling properties influence the detection efficiency. We identify molecular moieties whose presence in the molecules indicates high activity for THz detection and show an example where a simple modification of a frequently used self-assembling compound can enhance activity 85-fold. The capabilities of our screening method are demonstrated on narrow-band and broadband detection examples, and its possible applications in surface-enhanced spectroscopy are also discussed.Received 9 April 2021Revised 10 August 2021Accepted 7 September 2021DOI:https://doi.org/10.1103/PhysRevX.11.041035Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)TechniquesDensity functional theoryElectronic structureHigh-throughput calculationsMachine learningRaman spectroscopySurface-enhanced Raman spectroscopyTerahertz spectroscopyAtomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chennx完成签到,获得积分10
刚刚
哈密瓜发布了新的文献求助10
1秒前
1秒前
浮游应助zou采纳,获得10
1秒前
1秒前
1秒前
阳佟水蓉完成签到,获得积分10
2秒前
克林发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
浮游应助说话请投币采纳,获得10
3秒前
3秒前
过儿完成签到,获得积分10
3秒前
4秒前
能干的荆完成签到 ,获得积分10
4秒前
拼搏的寒凝完成签到 ,获得积分10
4秒前
桐桐应助zhouzhou采纳,获得10
5秒前
啦啦啦完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
XHT发布了新的文献求助10
6秒前
香蕉觅云应助大大大骁采纳,获得10
6秒前
所所应助心行采纳,获得10
6秒前
7秒前
白小白完成签到,获得积分10
7秒前
过儿发布了新的文献求助10
7秒前
7秒前
毅诚菌发布了新的文献求助10
7秒前
毅诚菌发布了新的文献求助10
7秒前
7秒前
毅诚菌发布了新的文献求助10
8秒前
毅诚菌发布了新的文献求助10
8秒前
毅诚菌发布了新的文献求助10
8秒前
毅诚菌发布了新的文献求助10
8秒前
平常的草莓完成签到,获得积分10
8秒前
8秒前
毅诚菌发布了新的文献求助10
9秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907