Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods

太赫兹辐射 计算机科学 人工智能 光电子学 物理
作者
Zsuzsanna Koczor-Benda,Alexandra Boehmke,Angelos Xomalis,Rakesh Arul,Charlie Readman,Jeremy J. Baumberg,Edina Rosta
出处
期刊:Physical Review X [American Physical Society]
卷期号:11 (4) 被引量:6
标识
DOI:10.1103/physrevx.11.041035
摘要

The molecular requirements are explored for achieving efficient signal up-conversion in a recently developed technique for terahertz (THz) detection based on molecular optomechanics. We discuss which molecular and spectroscopic properties are most important for predicting efficient THz detection and outline a computational approach based on quantum-chemistry and machine-learning methods for calculating these properties. We validate this approach by bulk and surface-enhanced Raman scattering and infrared absorption measurements. We develop a virtual screening methodology performed on databases of millions of commercially available compounds. Quantum-chemistry calculations for about 3000 compounds are complemented by machine-learning methods to predict applicability of 93 000 organic molecules for detection. Training is performed on vibrational spectroscopic properties based on absorption and Raman scattering intensities. Our top molecules have conversion intensity two orders of magnitude higher than an average molecule from the database. We also discuss how other properties like molecular shape and self-assembling properties influence the detection efficiency. We identify molecular moieties whose presence in the molecules indicates high activity for THz detection and show an example where a simple modification of a frequently used self-assembling compound can enhance activity 85-fold. The capabilities of our screening method are demonstrated on narrow-band and broadband detection examples, and its possible applications in surface-enhanced spectroscopy are also discussed.Received 9 April 2021Revised 10 August 2021Accepted 7 September 2021DOI:https://doi.org/10.1103/PhysRevX.11.041035Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)TechniquesDensity functional theoryElectronic structureHigh-throughput calculationsMachine learningRaman spectroscopySurface-enhanced Raman spectroscopyTerahertz spectroscopyAtomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助菲菲采纳,获得10
刚刚
煜琪完成签到,获得积分10
刚刚
排骨炖豆角完成签到 ,获得积分10
1秒前
tdd完成签到,获得积分10
1秒前
清脆的亚男完成签到,获得积分10
1秒前
八八九九九1完成签到,获得积分10
1秒前
布同完成签到,获得积分10
1秒前
围城完成签到,获得积分10
2秒前
2秒前
凉风发布了新的文献求助30
2秒前
靓丽的寒蕾完成签到,获得积分10
3秒前
3秒前
山長完成签到,获得积分10
3秒前
在水一方应助阿杰采纳,获得30
3秒前
打打应助shi采纳,获得10
3秒前
3秒前
3秒前
简单双双完成签到,获得积分20
3秒前
de铭完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
4秒前
4秒前
Johnson发布了新的文献求助10
4秒前
丢星完成签到 ,获得积分10
5秒前
秦桂敏完成签到 ,获得积分10
5秒前
799发布了新的文献求助10
5秒前
年轻芝麻完成签到 ,获得积分10
5秒前
莫归尘完成签到,获得积分20
6秒前
都不好听发布了新的文献求助10
6秒前
搜集达人应助不做Aspirin采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
希望天下0贩的0应助丸子采纳,获得10
6秒前
冷静完成签到,获得积分10
7秒前
7秒前
研友_Z30GJ8完成签到,获得积分0
7秒前
寂寞的迎天完成签到,获得积分10
7秒前
Sorryma完成签到,获得积分10
7秒前
李爱国应助热心的冬菱采纳,获得10
8秒前
Shandongdaxiu发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707949
求助须知:如何正确求助?哪些是违规求助? 5186552
关于积分的说明 15252222
捐赠科研通 4861091
什么是DOI,文献DOI怎么找? 2609200
邀请新用户注册赠送积分活动 1559900
关于科研通互助平台的介绍 1517670