Molecular Screening for Terahertz Detection with Machine-Learning-Based Methods

太赫兹辐射 拉曼散射 材料科学 吸收(声学) 分子 计算机科学 光谱学 拉曼光谱 纳米技术 化学 光电子学 物理 光学 有机化学 量子力学 复合材料
作者
Zsuzsanna Koczor-Benda,Alexandra Boehmke,Angelos Xomalis,Rakesh Arul,Charlie Readman,Jeremy J. Baumberg,Edina Rosta
出处
期刊:Physical Review X [American Physical Society]
卷期号:11 (4) 被引量:4
标识
DOI:10.1103/physrevx.11.041035
摘要

The molecular requirements are explored for achieving efficient signal up-conversion in a recently developed technique for terahertz (THz) detection based on molecular optomechanics. We discuss which molecular and spectroscopic properties are most important for predicting efficient THz detection and outline a computational approach based on quantum-chemistry and machine-learning methods for calculating these properties. We validate this approach by bulk and surface-enhanced Raman scattering and infrared absorption measurements. We develop a virtual screening methodology performed on databases of millions of commercially available compounds. Quantum-chemistry calculations for about 3000 compounds are complemented by machine-learning methods to predict applicability of 93 000 organic molecules for detection. Training is performed on vibrational spectroscopic properties based on absorption and Raman scattering intensities. Our top molecules have conversion intensity two orders of magnitude higher than an average molecule from the database. We also discuss how other properties like molecular shape and self-assembling properties influence the detection efficiency. We identify molecular moieties whose presence in the molecules indicates high activity for THz detection and show an example where a simple modification of a frequently used self-assembling compound can enhance activity 85-fold. The capabilities of our screening method are demonstrated on narrow-band and broadband detection examples, and its possible applications in surface-enhanced spectroscopy are also discussed.Received 9 April 2021Revised 10 August 2021Accepted 7 September 2021DOI:https://doi.org/10.1103/PhysRevX.11.041035Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)TechniquesDensity functional theoryElectronic structureHigh-throughput calculationsMachine learningRaman spectroscopySurface-enhanced Raman spectroscopyTerahertz spectroscopyAtomic, Molecular & OpticalCondensed Matter, Materials & Applied Physics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xx关闭了xx文献求助
刚刚
1秒前
3秒前
4秒前
su发布了新的文献求助10
4秒前
小马甲应助鳗鱼灵寒采纳,获得10
4秒前
calbee发布了新的文献求助10
5秒前
lalala发布了新的文献求助10
6秒前
6秒前
张辰12536完成签到,获得积分10
7秒前
8秒前
程琳发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
88完成签到,获得积分10
9秒前
我是站长才怪应助谭谨川采纳,获得10
9秒前
1233发布了新的文献求助10
10秒前
bismarck7完成签到,获得积分10
10秒前
10秒前
10秒前
田様应助淡淡采白采纳,获得10
10秒前
赖道之发布了新的文献求助10
11秒前
calbee完成签到,获得积分10
11秒前
11秒前
和谐白云完成签到,获得积分10
12秒前
12秒前
12秒前
王w发布了新的文献求助10
13秒前
yyyyy完成签到,获得积分10
14秒前
14秒前
大侠发布了新的文献求助10
14秒前
魁梧的乐天完成签到,获得积分20
14秒前
冯度翩翩完成签到,获得积分10
15秒前
科研通AI2S应助satchzhao采纳,获得10
15秒前
jijizz完成签到,获得积分10
16秒前
一一发布了新的文献求助10
16秒前
小马甲应助ChiDaiOLD采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808