亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 哲学 语言学 化学工程
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:28
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助jy采纳,获得10
刚刚
4秒前
12秒前
jy发布了新的文献求助10
17秒前
畅快甜瓜发布了新的文献求助30
18秒前
22秒前
22秒前
李爱国应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
31秒前
33秒前
39秒前
43秒前
49秒前
无私匕发布了新的文献求助30
55秒前
1分钟前
1分钟前
1分钟前
Owen应助苏11采纳,获得10
1分钟前
火星上的山河完成签到 ,获得积分10
1分钟前
啦啦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
苏11发布了新的文献求助10
1分钟前
lzl007完成签到 ,获得积分10
1分钟前
星驰完成签到 ,获得积分10
1分钟前
苏11完成签到,获得积分10
2分钟前
思源应助读书的时候采纳,获得10
2分钟前
单薄绿竹完成签到,获得积分10
2分钟前
lzl008完成签到 ,获得积分10
2分钟前
赘婿应助畅快甜瓜采纳,获得30
2分钟前
2分钟前
2分钟前
endure发布了新的文献求助10
2分钟前
jy发布了新的文献求助10
2分钟前
3分钟前
科研通AI6.1应助zslg采纳,获得10
3分钟前
万能图书馆应助啦啦采纳,获得10
3分钟前
automan完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732270
求助须知:如何正确求助?哪些是违规求助? 5337908
关于积分的说明 15322123
捐赠科研通 4877888
什么是DOI,文献DOI怎么找? 2620743
邀请新用户注册赠送积分活动 1569962
关于科研通互助平台的介绍 1526574