亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 哲学 语言学 化学工程
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:28
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
Kototo完成签到,获得积分10
54秒前
我是老大应助危机的雪旋采纳,获得10
1分钟前
Hillson完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
日富一日发布了新的文献求助10
2分钟前
zuihaodewomen完成签到 ,获得积分10
2分钟前
Phil完成签到 ,获得积分10
2分钟前
刘天宇完成签到 ,获得积分10
3分钟前
Sue完成签到 ,获得积分10
3分钟前
blueskyzhi完成签到,获得积分10
3分钟前
CodeCraft应助优秀的行云采纳,获得10
3分钟前
ysss0831完成签到,获得积分10
4分钟前
4分钟前
优秀的行云完成签到,获得积分10
4分钟前
zilt1109发布了新的文献求助10
4分钟前
赘婿应助Queena采纳,获得10
4分钟前
4分钟前
4分钟前
jfc完成签到 ,获得积分10
4分钟前
Queena发布了新的文献求助10
4分钟前
鲍惜寒完成签到 ,获得积分20
4分钟前
鲍惜寒发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
Becky完成签到 ,获得积分10
5分钟前
白华苍松发布了新的文献求助20
5分钟前
yhw完成签到,获得积分20
5分钟前
5分钟前
yhw发布了新的文献求助10
6分钟前
开放蓝天应助白华苍松采纳,获得10
6分钟前
Hello应助yhw采纳,获得10
6分钟前
小丸子和zz完成签到 ,获得积分10
6分钟前
JoeyJin完成签到,获得积分10
7分钟前
nuoberry完成签到,获得积分10
7分钟前
夜雨完成签到,获得积分10
7分钟前
花陵完成签到 ,获得积分10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584670
求助须知:如何正确求助?哪些是违规求助? 4668608
关于积分的说明 14771499
捐赠科研通 4612897
什么是DOI,文献DOI怎么找? 2530169
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499