清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 哲学 语言学 化学工程
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:28
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Marshall采纳,获得10
2秒前
zhangjianzeng完成签到 ,获得积分10
6秒前
woxinyouyou完成签到,获得积分10
7秒前
14秒前
赵一完成签到 ,获得积分10
15秒前
Marshall发布了新的文献求助10
20秒前
24秒前
sonicker完成签到 ,获得积分10
32秒前
dawnfrf完成签到,获得积分10
42秒前
ding应助jjyyy采纳,获得10
47秒前
JamesPei应助桃子e采纳,获得10
1分钟前
minjeong完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
桃子e发布了新的文献求助10
1分钟前
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
怕黑小伙发布了新的文献求助10
1分钟前
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
jjyyy发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助xiaoyu采纳,获得10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
科研通AI6.1应助桃子e采纳,获得10
2分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
3分钟前
Edward发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
哈哈完成签到,获得积分10
4分钟前
4分钟前
xiaoyu发布了新的文献求助10
4分钟前
一颗困困豆耶完成签到,获得积分10
5分钟前
小马甲应助桃子e采纳,获得10
5分钟前
文艺的鲜花完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788937
求助须知:如何正确求助?哪些是违规求助? 5713498
关于积分的说明 15474025
捐赠科研通 4916906
什么是DOI,文献DOI怎么找? 2646617
邀请新用户注册赠送积分活动 1594299
关于科研通互助平台的介绍 1548721