DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 语言学 化学工程 哲学
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:28
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实安白发布了新的文献求助10
1秒前
烟花应助娜罗的名单采纳,获得10
1秒前
csu_zs发布了新的文献求助10
1秒前
Dimples完成签到 ,获得积分10
2秒前
yfy完成签到,获得积分10
2秒前
IV完成签到,获得积分10
2秒前
2秒前
SciGPT应助天才大肥猫采纳,获得10
2秒前
3秒前
陈冲冲完成签到,获得积分10
3秒前
ZZzz发布了新的文献求助150
3秒前
111发布了新的文献求助10
3秒前
YQT完成签到,获得积分10
4秒前
舒心安柏完成签到 ,获得积分10
4秒前
临江仙完成签到 ,获得积分10
4秒前
冬雪发布了新的文献求助10
5秒前
qerovo发布了新的文献求助10
5秒前
Flipped完成签到,获得积分10
5秒前
5秒前
科目三应助xxl采纳,获得10
5秒前
30333完成签到,获得积分10
5秒前
huhuhu完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
kevin完成签到,获得积分10
7秒前
7秒前
活力的天空完成签到,获得积分10
7秒前
勤奋代梅完成签到,获得积分20
8秒前
啦啦啦完成签到,获得积分10
8秒前
Wangjingxuan完成签到,获得积分10
9秒前
9秒前
ddd发布了新的文献求助10
9秒前
完美世界应助学分采纳,获得10
9秒前
透明木头完成签到,获得积分10
10秒前
10秒前
10秒前
謓言发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251748
求助须知:如何正确求助?哪些是违规求助? 4415796
关于积分的说明 13747415
捐赠科研通 4287606
什么是DOI,文献DOI怎么找? 2352502
邀请新用户注册赠送积分活动 1349331
关于科研通互助平台的介绍 1308812