DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 语言学 化学工程 哲学
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:28
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果蜗牛发布了新的文献求助10
刚刚
1秒前
Ultraman完成签到,获得积分10
1秒前
王宁发布了新的文献求助10
1秒前
十四完成签到 ,获得积分10
2秒前
LLL发布了新的文献求助10
2秒前
2秒前
开花开花发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
calm发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
musejie应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
balabala发布了新的文献求助10
5秒前
5秒前
Chandler完成签到,获得积分10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
啦啦啦发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
summer应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
6秒前
古往今来应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620