DMC-Fusion: Deep Multi-Cascade Fusion With Classifier-Based Feature Synthesis for Medical Multi-Modal Images

人工智能 计算机科学 模式识别(心理学) 特征提取 图像融合 特征(语言学) 级联 解码方法 融合 分类器(UML) 算法 图像(数学) 工程类 语言学 化学工程 哲学
作者
Qing Jun Zuo,Jianping Zhang,Yin Yang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 3438-3449 被引量:20
标识
DOI:10.1109/jbhi.2021.3083752
摘要

Multi-modal medical image fusion is a challenging yet important task for precision diagnosis and surgical planning in clinical practice. Although single feature fusion strategy such as Densefuse has achieved inspiring performance, it tends to be not fully preserved for the source image features. In this paper, a deep multi-fusion framework with classifier-based feature synthesis is proposed to automatically fuse multi-modal medical images. It consists of a pre-trained autoencoder based on dense connections, a feature classifier and a multi-cascade fusion decoder with separately fusing high-frequency and low-frequency. The encoder and decoder are transferred from MS-COCO datasets and pre-trained simultaneously on multi-modal medical image public datasets to extract features. The feature classification is conducted through Gaussian high-pass filtering and the peak signal to noise ratio thresholding, then feature maps in each layer of the pre-trained Dense-Block and decoder are divided into high-frequency and low-frequency sequences. Specifically, in proposed feature fusion block, parameter-adaptive pulse coupled neural network and l1-weighted are employed to fuse high-frequency and low-frequency, respectively. Finally, we design a novel multi-cascade fusion decoder on total decoding feature stage to selectively fuse useful information from different modalities. We also validate our approach for the brain disease classification using the fused images, and a statistical significance test is performed to illustrate that the improvement in classification performance is due to the fusion. Experimental results demonstrate that the proposed method achieves the state-of-the-art performance in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
calm发布了新的文献求助10
1秒前
十一完成签到,获得积分10
1秒前
Cwx2020发布了新的文献求助10
1秒前
Jasper应助gxh66采纳,获得10
3秒前
鬼才之眼完成签到,获得积分10
4秒前
Fury发布了新的文献求助10
5秒前
ccq发布了新的文献求助10
5秒前
yanxueyi完成签到 ,获得积分10
6秒前
清醒完成签到,获得积分10
8秒前
共享精神应助wang采纳,获得10
9秒前
10秒前
11秒前
11秒前
calm完成签到,获得积分20
12秒前
15秒前
15秒前
quanjia发布了新的文献求助10
16秒前
啦啦啦发布了新的文献求助10
16秒前
18秒前
19秒前
19秒前
巫马小霜发布了新的文献求助20
21秒前
wang发布了新的文献求助10
22秒前
布洛芬发布了新的文献求助10
23秒前
Singularity应助甜甜采纳,获得10
24秒前
bestbanana发布了新的文献求助10
24秒前
刻苦小丸子完成签到,获得积分10
24秒前
wnche完成签到,获得积分10
25秒前
上官若男应助爱睡午觉采纳,获得10
25秒前
万能图书馆应助清醒采纳,获得10
26秒前
和谐小南完成签到,获得积分10
27秒前
司徒不二完成签到,获得积分0
28秒前
28秒前
在水一方应助kissssp采纳,获得10
33秒前
Fa完成签到,获得积分10
35秒前
35秒前
36秒前
Dado完成签到,获得积分10
36秒前
36秒前
xiaowu完成签到,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787114
捐赠科研通 2444837
什么是DOI,文献DOI怎么找? 1300071
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023