A Reinforcement Learning based Path Planning Approach in 3D Environment

强化学习 计算机科学 运动规划 随机性 路径(计算) 集合(抽象数据类型) 树(集合论) 人工智能 计算 钥匙(锁) 任意角度路径规划 数学优化 机器学习 算法 机器人 数学 统计 计算机安全 数学分析 程序设计语言
作者
Geesara Kulathunga
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:212: 152-160 被引量:16
标识
DOI:10.1016/j.procs.2022.10.217
摘要

Optimal motion planning involves obstacles avoidance whereas path planning is the key to success in optimal motion planning. Due to the computational demands, most of the path planning algorithms can not be employed for real-time-based applications. Model-based reinforcement learning approaches for path planning have received particular success in the recent past. Yet, most such approaches do not have deterministic output due to randomness. In this paper, we investigate existing reinforcement learning-based approaches for path planning and propose such an approach for path planning in the 3D environment. One such reinforcement learning-based approach is a deterministic tree-based approach, and the other two approaches are based on Q-learning and approximate policy gradient, respectively. We tested the preceding approaches on two different simulators, each of which consists of a set of random obstacles that can be changed or moved dynamically. After analysing the result and computation time, we concluded that the deterministic tree search approach provides highly stable results. However, the computational time is considerably higher than the other two approaches. Finally, the comparative results are provided in terms of accuracy and computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听闻发布了新的文献求助10
1秒前
1秒前
ganjqly应助乐观的海雪采纳,获得20
1秒前
笑容完成签到,获得积分10
2秒前
NoobMasterZYF发布了新的文献求助10
2秒前
2秒前
LYSM应助Ahan采纳,获得20
3秒前
3秒前
GG发布了新的文献求助10
3秒前
4秒前
4秒前
22关闭了22文献求助
4秒前
tyj发布了新的文献求助10
5秒前
tecumseh发布了新的文献求助10
5秒前
beta完成签到,获得积分10
6秒前
ED应助一米阳光采纳,获得10
6秒前
225455完成签到,获得积分20
7秒前
香蕉觅云应助金虎采纳,获得10
7秒前
7秒前
淳于寻冬发布了新的文献求助10
7秒前
8秒前
蜜呐完成签到,获得积分10
8秒前
9秒前
黑妹发布了新的文献求助10
9秒前
ym发布了新的文献求助10
9秒前
清脆碧空应助NoobMasterZYF采纳,获得10
10秒前
FashionBoy应助黎洛洛采纳,获得10
11秒前
11秒前
楚狂接舆完成签到,获得积分10
12秒前
咎穆发布了新的文献求助10
12秒前
小昵称完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
称心不尤发布了新的文献求助10
14秒前
14秒前
14秒前
yznfly应助动听的晓啸采纳,获得20
15秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352