Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors

吸附 人工神经网络 计算机科学 催化作用 化学 机器学习 物理化学 有机化学
作者
Mie Andersen,Karsten Reuter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (12): 2741-2749 被引量:84
标识
DOI:10.1021/acs.accounts.1c00153
摘要

ConspectusHeterogeneous catalysts are rather complex materials that come in many classes (e.g., metals, oxides, carbides) and shapes. At the same time, the interaction of the catalyst surface with even a relatively simple gas-phase environment such as syngas (CO and H2) may already produce a wide variety of reaction intermediates ranging from atoms to complex molecules. The starting point for creating predictive maps of, e.g., surface coverages or chemical activities of potential catalyst materials is the reliable prediction of adsorption enthalpies of all of these intermediates. For simple systems, direct density functional theory (DFT) calculations are currently the method of choice. However, a wider exploration of complex materials and reaction networks generally requires enthalpy predictions at lower computational cost.The use of machine learning (ML) and related techniques to make accurate and low-cost predictions of quantum-mechanical calculations has gained increasing attention lately. The employed approaches span from physically motivated models over hybrid physics−ΔML approaches to complete black-box methods such as deep neural networks. In recent works we have explored the possibilities for using a compressed sensing method (Sure Independence Screening and Sparsifying Operator, SISSO) to identify sparse (low-dimensional) descriptors for the prediction of adsorption enthalpies at various active-site motifs of metals and oxides. We start from a set of physically motivated primary features such as atomic acid/base properties, coordination numbers, or band moments and let the data and the compressed sensing method find the best algebraic combination of these features. Here we take this work as a starting point to categorize and compare recent ML-based approaches with a particular focus on model sparsity, data efficiency, and the level of physical insight that one can obtain from the model.Looking ahead, while many works to date have focused only on the mere prediction of databases of, e.g., adsorption enthalpies, there is also an emerging interest in our field to start using ML predictions to answer fundamental science questions about the functioning of heterogeneous catalysts or perhaps even to design better catalysts than we know today. This task is significantly simplified in works that make use of scaling-relation-based models (volcano curves), where the model outcome is determined by only one or two adsorption enthalpies and which consequently become the sole target for ML-based high-throughput screening or design. However, the availability of cheap ML energetics also allows going beyond scaling relations. On the basis of our own work in this direction, we will discuss the additional physical insight that can be achieved by integrating ML-based predictions with traditional catalysis modeling techniques from thermal and electrocatalysis, such as the computational hydrogen electrode and microkinetic modeling, as well as the challenges that lie ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无风海发布了新的文献求助10
1秒前
hss完成签到,获得积分10
2秒前
云澈发布了新的文献求助10
2秒前
2秒前
CR7应助就晚安喽采纳,获得20
2秒前
3秒前
Zhao完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
英姑应助娇娇采纳,获得10
4秒前
64658应助可积采纳,获得10
5秒前
谜呀发布了新的文献求助10
5秒前
喽喽发布了新的文献求助30
6秒前
7秒前
7秒前
在荷兰看郁金香的木鱼完成签到,获得积分10
8秒前
lagrange发布了新的文献求助10
8秒前
请你吃折耳根完成签到,获得积分10
8秒前
大有阳光完成签到,获得积分10
8秒前
8秒前
搜集达人应助无风海采纳,获得10
9秒前
9秒前
韩hqf发布了新的文献求助10
9秒前
沐雨微寒完成签到,获得积分10
9秒前
小唐发布了新的文献求助20
10秒前
10秒前
SYLH应助刻苦大门采纳,获得10
10秒前
科研菜鸟完成签到,获得积分10
10秒前
Smile2044完成签到,获得积分10
10秒前
桐桐应助yuzi采纳,获得10
11秒前
jia完成签到 ,获得积分10
11秒前
11秒前
搜集达人应助zxy采纳,获得10
12秒前
elever11发布了新的文献求助10
13秒前
13秒前
喽喽发布了新的文献求助10
13秒前
14秒前
智智完成签到 ,获得积分10
14秒前
DijiaXu应助慢慢采纳,获得10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052