亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors

吸附 人工神经网络 计算机科学 催化作用 化学 机器学习 物理化学 有机化学
作者
Mie Andersen,Karsten Reuter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (12): 2741-2749 被引量:84
标识
DOI:10.1021/acs.accounts.1c00153
摘要

ConspectusHeterogeneous catalysts are rather complex materials that come in many classes (e.g., metals, oxides, carbides) and shapes. At the same time, the interaction of the catalyst surface with even a relatively simple gas-phase environment such as syngas (CO and H2) may already produce a wide variety of reaction intermediates ranging from atoms to complex molecules. The starting point for creating predictive maps of, e.g., surface coverages or chemical activities of potential catalyst materials is the reliable prediction of adsorption enthalpies of all of these intermediates. For simple systems, direct density functional theory (DFT) calculations are currently the method of choice. However, a wider exploration of complex materials and reaction networks generally requires enthalpy predictions at lower computational cost.The use of machine learning (ML) and related techniques to make accurate and low-cost predictions of quantum-mechanical calculations has gained increasing attention lately. The employed approaches span from physically motivated models over hybrid physics−ΔML approaches to complete black-box methods such as deep neural networks. In recent works we have explored the possibilities for using a compressed sensing method (Sure Independence Screening and Sparsifying Operator, SISSO) to identify sparse (low-dimensional) descriptors for the prediction of adsorption enthalpies at various active-site motifs of metals and oxides. We start from a set of physically motivated primary features such as atomic acid/base properties, coordination numbers, or band moments and let the data and the compressed sensing method find the best algebraic combination of these features. Here we take this work as a starting point to categorize and compare recent ML-based approaches with a particular focus on model sparsity, data efficiency, and the level of physical insight that one can obtain from the model.Looking ahead, while many works to date have focused only on the mere prediction of databases of, e.g., adsorption enthalpies, there is also an emerging interest in our field to start using ML predictions to answer fundamental science questions about the functioning of heterogeneous catalysts or perhaps even to design better catalysts than we know today. This task is significantly simplified in works that make use of scaling-relation-based models (volcano curves), where the model outcome is determined by only one or two adsorption enthalpies and which consequently become the sole target for ML-based high-throughput screening or design. However, the availability of cheap ML energetics also allows going beyond scaling relations. On the basis of our own work in this direction, we will discuss the additional physical insight that can be achieved by integrating ML-based predictions with traditional catalysis modeling techniques from thermal and electrocatalysis, such as the computational hydrogen electrode and microkinetic modeling, as well as the challenges that lie ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qinghua完成签到,获得积分10
10秒前
13秒前
Sana发布了新的文献求助10
19秒前
zhao完成签到 ,获得积分10
21秒前
毕业毕业毕业完成签到 ,获得积分10
42秒前
明天更好完成签到 ,获得积分10
43秒前
疯狂的炒米粉完成签到 ,获得积分10
52秒前
flyinthesky完成签到,获得积分10
1分钟前
HC完成签到,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
yueying完成签到,获得积分10
2分钟前
优秀棒棒糖完成签到 ,获得积分10
2分钟前
吃鱼完成签到 ,获得积分10
2分钟前
科研通AI5应助LynSharonRose采纳,获得30
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
2分钟前
WanchengHu发布了新的文献求助10
3分钟前
wynne313完成签到 ,获得积分10
3分钟前
3分钟前
shaylie完成签到 ,获得积分10
3分钟前
3分钟前
oscar完成签到,获得积分10
3分钟前
LynSharonRose发布了新的文献求助30
3分钟前
cwy发布了新的文献求助10
3分钟前
小黄完成签到 ,获得积分10
3分钟前
及禾应助LynSharonRose采纳,获得20
3分钟前
WanchengHu完成签到,获得积分10
3分钟前
小马甲应助cwy采纳,获得10
3分钟前
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
4分钟前
LynSharonRose完成签到,获得积分10
4分钟前
hsy完成签到,获得积分10
4分钟前
4分钟前
善学以致用应助LULU采纳,获得10
4分钟前
4分钟前
月亮发布了新的文献求助10
4分钟前
科研通AI6应助月亮采纳,获得10
4分钟前
月亮完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626005
求助须知:如何正确求助?哪些是违规求助? 4025048
关于积分的说明 12458300
捐赠科研通 3710193
什么是DOI,文献DOI怎么找? 2046504
邀请新用户注册赠送积分活动 1078457
科研通“疑难数据库(出版商)”最低求助积分说明 960922