已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors

吸附 人工神经网络 计算机科学 催化作用 化学 机器学习 物理化学 有机化学
作者
Mie Andersen,Karsten Reuter
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (12): 2741-2749 被引量:75
标识
DOI:10.1021/acs.accounts.1c00153
摘要

ConspectusHeterogeneous catalysts are rather complex materials that come in many classes (e.g., metals, oxides, carbides) and shapes. At the same time, the interaction of the catalyst surface with even a relatively simple gas-phase environment such as syngas (CO and H2) may already produce a wide variety of reaction intermediates ranging from atoms to complex molecules. The starting point for creating predictive maps of, e.g., surface coverages or chemical activities of potential catalyst materials is the reliable prediction of adsorption enthalpies of all of these intermediates. For simple systems, direct density functional theory (DFT) calculations are currently the method of choice. However, a wider exploration of complex materials and reaction networks generally requires enthalpy predictions at lower computational cost.The use of machine learning (ML) and related techniques to make accurate and low-cost predictions of quantum-mechanical calculations has gained increasing attention lately. The employed approaches span from physically motivated models over hybrid physics−ΔML approaches to complete black-box methods such as deep neural networks. In recent works we have explored the possibilities for using a compressed sensing method (Sure Independence Screening and Sparsifying Operator, SISSO) to identify sparse (low-dimensional) descriptors for the prediction of adsorption enthalpies at various active-site motifs of metals and oxides. We start from a set of physically motivated primary features such as atomic acid/base properties, coordination numbers, or band moments and let the data and the compressed sensing method find the best algebraic combination of these features. Here we take this work as a starting point to categorize and compare recent ML-based approaches with a particular focus on model sparsity, data efficiency, and the level of physical insight that one can obtain from the model.Looking ahead, while many works to date have focused only on the mere prediction of databases of, e.g., adsorption enthalpies, there is also an emerging interest in our field to start using ML predictions to answer fundamental science questions about the functioning of heterogeneous catalysts or perhaps even to design better catalysts than we know today. This task is significantly simplified in works that make use of scaling-relation-based models (volcano curves), where the model outcome is determined by only one or two adsorption enthalpies and which consequently become the sole target for ML-based high-throughput screening or design. However, the availability of cheap ML energetics also allows going beyond scaling relations. On the basis of our own work in this direction, we will discuss the additional physical insight that can be achieved by integrating ML-based predictions with traditional catalysis modeling techniques from thermal and electrocatalysis, such as the computational hydrogen electrode and microkinetic modeling, as well as the challenges that lie ahead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zxg采纳,获得10
4秒前
5秒前
12秒前
Yam呀完成签到 ,获得积分10
16秒前
无语的冰淇淋完成签到 ,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
23秒前
24秒前
单薄天蓉应助kiss小白白采纳,获得10
25秒前
wmuer完成签到 ,获得积分10
27秒前
囿于昼夜发布了新的文献求助10
28秒前
小谢完成签到,获得积分10
36秒前
37秒前
38秒前
xjcy应助LHS采纳,获得10
39秒前
宝宝烤面包完成签到,获得积分10
43秒前
44秒前
喜羊羊完成签到,获得积分10
44秒前
狄绮完成签到 ,获得积分10
47秒前
王饱饱完成签到 ,获得积分10
57秒前
58秒前
monster完成签到 ,获得积分10
58秒前
1分钟前
土豪的灵竹完成签到 ,获得积分10
1分钟前
XCHI完成签到 ,获得积分10
1分钟前
爱丽丝敏完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
Jing完成签到 ,获得积分10
1分钟前
1分钟前
桃桃发布了新的文献求助10
1分钟前
1分钟前
木有完成签到 ,获得积分10
1分钟前
CodeCraft应助潇潇雨歇采纳,获得10
1分钟前
qq完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李李李发布了新的文献求助10
1分钟前
123完成签到 ,获得积分10
1分钟前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
Organic Synthesis 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3283894
求助须知:如何正确求助?哪些是违规求助? 2921470
关于积分的说明 8406630
捐赠科研通 2593034
什么是DOI,文献DOI怎么找? 1413724
科研通“疑难数据库(出版商)”最低求助积分说明 658546
邀请新用户注册赠送积分活动 640368