Intelligent Fault Diagnosis of Rotary Machines: Conditional Auxiliary Classifier GAN Coupled With Meta Learning Using Limited Data

往复式压缩机 计算机科学 人工智能 分类器(UML) 机器学习 气体压缩机 数据挖掘 模式识别(心理学) 工程类 机械工程
作者
Sonal Dixit,Nishchal K. Verma,A. K. Ghosh
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-11 被引量:91
标识
DOI:10.1109/tim.2021.3082264
摘要

The industrial advancement has promoted the development of deep learning (DL)-based intelligent fault diagnosis methods for condition-based maintenance (CBM). Though these methods rely on large dataset for training, the collection of large number of fault samples is not practically feasible. For this purpose, generative adversarial networks (GANs) are capable to generate high-quality synthetic samples. However, the problem still persists with the training of GAN using limited fault samples that are present in practical conditions. This article proposes a novel conditional auxiliary classifier GAN framework coupled with model agnostic meta learning (MAML) to resolve this problem. The objective is to initialize and update the network parameters using MAML instead of regular stochastic gradient learning. This modification enables GAN to learn the task of synthetic sample generation using the limited training dataset. The effectiveness of the proposed framework has been compared with several famous state-of-the-art intelligent fault diagnosis methods existing in the literature. The comparative performance has been validated on benchmarked datasets, i.e., air compressor and bearing datasets collected from a single-stage reciprocating air compressor. The proposed framework is able to achieve the classification accuracy of 99.26% and 98.55% for bearing and air compressor datasets, respectively, with only ten samples per class. Moreover, a real-time case study is performed to validate the proposed method in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的念梦完成签到,获得积分10
1秒前
1秒前
阳光桐完成签到,获得积分10
1秒前
2秒前
2秒前
wst发布了新的文献求助10
3秒前
赵琼珍发布了新的文献求助10
3秒前
贵哥发布了新的文献求助10
4秒前
5秒前
5秒前
曲终人散完成签到,获得积分10
5秒前
Archer发布了新的文献求助10
5秒前
唐泽雪穗应助大漠谣采纳,获得10
6秒前
搜集达人应助bee采纳,获得10
6秒前
6秒前
6秒前
贪玩阑香完成签到,获得积分10
7秒前
Xiaofeng完成签到,获得积分10
7秒前
7秒前
温暖的沛凝完成签到 ,获得积分10
8秒前
Zx_1993应助小鲤鱼本鱼采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
AliHamid发布了新的文献求助30
10秒前
又又发布了新的文献求助10
11秒前
11秒前
11秒前
通辽小判官完成签到,获得积分10
12秒前
外向万声完成签到,获得积分10
12秒前
quan发布了新的文献求助10
12秒前
Archer完成签到,获得积分20
13秒前
ling完成签到,获得积分10
13秒前
NexusExplorer应助赵琼珍采纳,获得10
13秒前
余淮完成签到,获得积分10
13秒前
wst完成签到,获得积分20
14秒前
Yao完成签到,获得积分10
14秒前
李萌萌完成签到 ,获得积分10
14秒前
15秒前
15秒前
Pauline完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256