MGFN: A Multi-Granularity Fusion Convolutional Neural Network for Remote Sensing Scene Classification

计算机科学 卷积神经网络 粒度 人工智能 融合 传感器融合 模式识别(心理学) 操作系统 哲学 语言学
作者
Zhiguo Zeng,Xihong Chen,Zhihua Song
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 76038-76046
标识
DOI:10.1109/access.2021.3081922
摘要

Convolutional neural networks (CNNs) have been successfully used in remote sensing scene classification and identification due to their ability to capture deep spatial feature representations. However, the performance of deep models inevitably encounters a bottleneck when multimodality-dominated scene classification rather than single-modality-dominated scene classification is performed, due to the high similarity among different categories. In this study, we propose a novel multi-granularity fusion convolutional neural network (MGFN) to automatically capture the latent ontological features of remote sensing images. We firstly design a multigranularity module that can progressively crop input images to learn multigrained features, which can describe images to different degrees. Based on a comparison of different granularities, we then design a maxout-based module to learn the corresponding Gaussian covariance matrices of different granularities, which can extract second-order features to express the latent ontological essence of inputs and select the most distinguished inputs. We thirdly provide an adaptive fusion module to fuse all features via normalization to combine features of different degrees using the adaptive fused module. Finally, an SVM classifier is used to classify the fused matrix of every input image. Extensive experimentation and evaluations, particularly for multimodality-dominated scenes, demonstrate that the proposed network can achieve promising results for public remote sensing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
我是老大应助dpf666采纳,获得10
3秒前
3秒前
vanished_cat完成签到,获得积分10
3秒前
大会哥发布了新的文献求助10
4秒前
cbf完成签到,获得积分10
5秒前
seedcode发布了新的文献求助10
5秒前
5秒前
5秒前
小蘑菇应助忆寒采纳,获得50
7秒前
mooncake发布了新的文献求助10
8秒前
共享精神应助sdl采纳,获得10
8秒前
9秒前
佟莫言发布了新的文献求助10
10秒前
徐徐徐完成签到 ,获得积分20
10秒前
11秒前
srrrr完成签到,获得积分10
12秒前
zhou发布了新的文献求助30
13秒前
斯寜应助何小明采纳,获得20
13秒前
英俊的铭应助丝丝采纳,获得10
14秒前
思源应助123采纳,获得10
14秒前
深情安青应助yuguofang采纳,获得10
14秒前
14秒前
ShengQ完成签到,获得积分10
15秒前
charolte完成签到,获得积分10
15秒前
nini完成签到,获得积分10
15秒前
lipengjiajun完成签到,获得积分10
15秒前
吐司咩咩完成签到,获得积分10
16秒前
阿达完成签到 ,获得积分20
19秒前
19秒前
22秒前
22秒前
23秒前
n3pu030036应助myj采纳,获得10
23秒前
Mastar完成签到,获得积分10
23秒前
风趣的天奇完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
情怀应助典雅的纸飞机采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774624
求助须知:如何正确求助?哪些是违规求助? 3320418
关于积分的说明 10200000
捐赠科研通 3035017
什么是DOI,文献DOI怎么找? 1665320
邀请新用户注册赠送积分活动 796859
科研通“疑难数据库(出版商)”最低求助积分说明 757618