Unpaired Underwater Image Synthesis with a Disentangled Representation for Underwater Depth Map Prediction

水下 计算机科学 人工智能 计算机视觉 模式识别(心理学)
作者
Qi Zhao,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:Sensors [MDPI AG]
卷期号:21 (9): 3268-
标识
DOI:10.3390/s21093268
摘要

As one of the key requirements for underwater exploration, underwater depth map estimation is of great importance in underwater vision research. Although significant progress has been achieved in the fields of image-to-image translation and depth map estimation, a gap between normal depth map estimation and underwater depth map estimation still remains. Additionally, it is a great challenge to build a mapping function that converts a single underwater image into an underwater depth map due to the lack of paired data. Moreover, the ever-changing underwater environment further intensifies the difficulty of finding an optimal mapping solution. To eliminate these bottlenecks, we developed a novel image-to-image framework for underwater image synthesis and depth map estimation in underwater conditions. For the problem of the lack of paired data, by translating hazy in-air images (with a depth map) into underwater images, we initially obtained a paired dataset of underwater images and corresponding depth maps. To enrich our synthesized underwater dataset, we further translated hazy in-air images into a series of continuously changing underwater images with a specified style. For the depth map estimation, we included a coarse-to-fine network to provide a precise depth map estimation result. We evaluated the efficiency of our framework for a real underwater RGB-D dataset. The experimental results show that our method can provide a diversity of underwater images and the best depth map estimation precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nano完成签到,获得积分10
刚刚
小水完成签到 ,获得积分10
刚刚
刚刚
huangpeihao发布了新的文献求助10
1秒前
英俊的铭应助高挑的导师采纳,获得20
1秒前
Keng完成签到,获得积分10
2秒前
领导范儿应助diguohu采纳,获得10
4秒前
111111ww完成签到 ,获得积分10
5秒前
He关注了科研通微信公众号
5秒前
李超发布了新的文献求助10
6秒前
7秒前
子车茗应助卢西奥采纳,获得30
7秒前
陶醉的海冬完成签到 ,获得积分10
8秒前
超级无心完成签到,获得积分10
9秒前
9秒前
10秒前
xiaozhuan321完成签到,获得积分20
11秒前
轻松焱发布了新的文献求助10
12秒前
小凯同学完成签到,获得积分10
12秒前
13秒前
14秒前
HEIKU应助Ta沓如流星采纳,获得10
15秒前
小鬼完成签到,获得积分10
15秒前
BitBong完成签到,获得积分10
17秒前
17秒前
Hello应助111111ww采纳,获得10
19秒前
randomname完成签到,获得积分10
19秒前
高贵碧凡发布了新的文献求助10
20秒前
He完成签到,获得积分10
21秒前
Shen发布了新的文献求助10
21秒前
Dallas发布了新的文献求助10
21秒前
21秒前
22秒前
jackten发布了新的文献求助10
22秒前
doctorshg发布了新的文献求助30
23秒前
天天快乐应助hxn采纳,获得10
24秒前
24秒前
wlguo发布了新的文献求助10
25秒前
爱听歌的之柔完成签到,获得积分20
25秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643