The Multi-visit Traveling Salesman Problem with Multi-Drones

无人机 旅行商问题 计算机科学 有效载荷(计算) 数学优化 数学 网络数据包 算法 计算机网络 遗传学 生物
作者
Zhihao Luo,Mark Poon,Zhenzhen Zhang,Zhong Liu,Andrew Lim
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:128: 103172-103172 被引量:118
标识
DOI:10.1016/j.trc.2021.103172
摘要

The use of drones for parcel delivery has recently attracted wide attention due to its potential in improving efficiency of the last-mile delivery. Though attempts have been made on combined truck-drone delivery to deploy multiple drones that can deliver multiple packages per trip, many placed extra assumptions to simplify the problem. This paper investigates the multi-visit traveling salesman problem with multi-drones (MTSP-MD), whose objective is to minimize the time (makespan) required by the truck and the drones to serve all customers together. The energy consumption of the drone depends on the flight time, the self-weight of the drone and the total weight of packages carried by the drone, which declines after each delivery throughout the drone flight. The MTSP-MD problem consists of three complicated sub-problems, namely (1) the drone flight problem with both a payload capacity constraint and an energy endurance constraint, (2) the traveling salesman problem with precedence constraints, and (3) the synchronization problem between the truck route and the drone schedules. The problem is first formulated into a mixed-integer linear program (MILP) model and we propose a multi-start tabu search (MSTS) algorithm with tailored neighborhood structure and a two-level solution evaluation method that incorporates a drone-level segment-based evaluation and a solution-level evaluation based on the critical path method (CPM). The experimental results demonstrate the accuracy and efficiency of our proposed algorithm on small-scale instances and show a significant cost reduction when considering multi-visits, multi-drones, and drones with higher payload capacity and higher battery capacity for medium and large-scale instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
小心薛了你完成签到,获得积分10
3秒前
4秒前
CHEN完成签到 ,获得积分10
6秒前
乘舟江行完成签到,获得积分10
6秒前
幽默鱼完成签到,获得积分10
7秒前
鱼女士完成签到,获得积分10
7秒前
开放如天发布了新的文献求助10
8秒前
HuLL完成签到 ,获得积分10
9秒前
金甲狮王完成签到,获得积分10
9秒前
10秒前
王者归来完成签到,获得积分10
11秒前
周游完成签到,获得积分10
11秒前
Yang22完成签到,获得积分10
12秒前
13秒前
韶似狮发布了新的文献求助10
13秒前
如意烨霖完成签到,获得积分10
13秒前
有终完成签到 ,获得积分10
14秒前
gYang完成签到,获得积分10
14秒前
粒子耶完成签到,获得积分10
14秒前
ntxlks完成签到,获得积分10
15秒前
纯真含灵发布了新的文献求助30
15秒前
风趣的梦露完成签到 ,获得积分10
16秒前
开放如天完成签到,获得积分10
18秒前
深情安青应助perway采纳,获得10
18秒前
18秒前
动力小滋完成签到,获得积分10
20秒前
21秒前
繁荣的代秋完成签到,获得积分10
21秒前
认真丹亦完成签到 ,获得积分10
21秒前
LZY完成签到,获得积分10
21秒前
大气的雁桃完成签到,获得积分10
21秒前
花草般的清香完成签到,获得积分10
21秒前
糖糖糖唐完成签到,获得积分10
22秒前
无花果应助合适的梦菡采纳,获得10
22秒前
随便取完成签到,获得积分10
22秒前
SucceedIn完成签到,获得积分10
23秒前
24秒前
丹青完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671