The Multi-visit Traveling Salesman Problem with Multi-Drones

无人机 旅行商问题 计算机科学 有效载荷(计算) 数学优化 数学 网络数据包 算法 计算机网络 遗传学 生物
作者
Zhihao Luo,Mark Poon,Zhenzhen Zhang,Zhong Liu,Andrew Lim
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:128: 103172-103172 被引量:118
标识
DOI:10.1016/j.trc.2021.103172
摘要

The use of drones for parcel delivery has recently attracted wide attention due to its potential in improving efficiency of the last-mile delivery. Though attempts have been made on combined truck-drone delivery to deploy multiple drones that can deliver multiple packages per trip, many placed extra assumptions to simplify the problem. This paper investigates the multi-visit traveling salesman problem with multi-drones (MTSP-MD), whose objective is to minimize the time (makespan) required by the truck and the drones to serve all customers together. The energy consumption of the drone depends on the flight time, the self-weight of the drone and the total weight of packages carried by the drone, which declines after each delivery throughout the drone flight. The MTSP-MD problem consists of three complicated sub-problems, namely (1) the drone flight problem with both a payload capacity constraint and an energy endurance constraint, (2) the traveling salesman problem with precedence constraints, and (3) the synchronization problem between the truck route and the drone schedules. The problem is first formulated into a mixed-integer linear program (MILP) model and we propose a multi-start tabu search (MSTS) algorithm with tailored neighborhood structure and a two-level solution evaluation method that incorporates a drone-level segment-based evaluation and a solution-level evaluation based on the critical path method (CPM). The experimental results demonstrate the accuracy and efficiency of our proposed algorithm on small-scale instances and show a significant cost reduction when considering multi-visits, multi-drones, and drones with higher payload capacity and higher battery capacity for medium and large-scale instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zj完成签到,获得积分10
1秒前
蓝橙完成签到,获得积分10
2秒前
6秒前
GD88完成签到,获得积分10
7秒前
糟糕的梨愁完成签到,获得积分10
8秒前
莫西莫西完成签到 ,获得积分10
9秒前
小趴蔡完成签到 ,获得积分10
11秒前
唐唐发布了新的文献求助10
11秒前
飘逸剑身完成签到,获得积分10
14秒前
airtermis完成签到 ,获得积分10
14秒前
gfasdjsjdsjd完成签到,获得积分10
15秒前
15秒前
杨宁完成签到 ,获得积分10
15秒前
MchemG应助transition采纳,获得20
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
lxy发布了新的文献求助10
19秒前
gfasdjsjdsjd发布了新的文献求助10
20秒前
JCao727完成签到,获得积分10
20秒前
20秒前
21秒前
OAHCIL完成签到 ,获得积分10
22秒前
lixueao发布了新的文献求助10
23秒前
无辜的行云完成签到 ,获得积分0
26秒前
FIN应助gfasdjsjdsjd采纳,获得20
28秒前
今后应助gfasdjsjdsjd采纳,获得10
28秒前
排骨炖豆角完成签到 ,获得积分10
30秒前
一叶知秋应助大橙子采纳,获得10
32秒前
kk完成签到,获得积分10
35秒前
敏感春天完成签到,获得积分10
35秒前
凶狠的期待完成签到,获得积分10
37秒前
自然函发布了新的文献求助30
37秒前
JF123_完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
40秒前
杨召发布了新的文献求助10
41秒前
didi完成签到,获得积分10
41秒前
keyby发布了新的文献求助10
43秒前
FashionBoy应助xdc采纳,获得10
48秒前
杨召完成签到,获得积分10
53秒前
大橙子发布了新的文献求助10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022