The Multi-visit Traveling Salesman Problem with Multi-Drones

无人机 旅行商问题 计算机科学 有效载荷(计算) 数学优化 数学 网络数据包 算法 计算机网络 遗传学 生物
作者
Zhihao Luo,Mark Poon,Zhenzhen Zhang,Zhong Liu,Andrew Lim
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:128: 103172-103172 被引量:118
标识
DOI:10.1016/j.trc.2021.103172
摘要

The use of drones for parcel delivery has recently attracted wide attention due to its potential in improving efficiency of the last-mile delivery. Though attempts have been made on combined truck-drone delivery to deploy multiple drones that can deliver multiple packages per trip, many placed extra assumptions to simplify the problem. This paper investigates the multi-visit traveling salesman problem with multi-drones (MTSP-MD), whose objective is to minimize the time (makespan) required by the truck and the drones to serve all customers together. The energy consumption of the drone depends on the flight time, the self-weight of the drone and the total weight of packages carried by the drone, which declines after each delivery throughout the drone flight. The MTSP-MD problem consists of three complicated sub-problems, namely (1) the drone flight problem with both a payload capacity constraint and an energy endurance constraint, (2) the traveling salesman problem with precedence constraints, and (3) the synchronization problem between the truck route and the drone schedules. The problem is first formulated into a mixed-integer linear program (MILP) model and we propose a multi-start tabu search (MSTS) algorithm with tailored neighborhood structure and a two-level solution evaluation method that incorporates a drone-level segment-based evaluation and a solution-level evaluation based on the critical path method (CPM). The experimental results demonstrate the accuracy and efficiency of our proposed algorithm on small-scale instances and show a significant cost reduction when considering multi-visits, multi-drones, and drones with higher payload capacity and higher battery capacity for medium and large-scale instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的十八完成签到,获得积分10
2秒前
淡淡依霜完成签到 ,获得积分10
3秒前
simongao完成签到 ,获得积分10
3秒前
happpy完成签到,获得积分10
4秒前
4秒前
6秒前
ran完成签到 ,获得积分10
7秒前
平常莹芝完成签到,获得积分10
8秒前
小鱼医生完成签到 ,获得积分10
8秒前
小哈完成签到 ,获得积分10
11秒前
小杭76应助腼腆的十八采纳,获得10
11秒前
无与伦比完成签到 ,获得积分10
11秒前
曾经碧蓉完成签到,获得积分10
12秒前
12秒前
瓜兵是官爷完成签到,获得积分10
13秒前
zheyu完成签到,获得积分10
14秒前
嗯呢完成签到 ,获得积分10
14秒前
树上种树完成签到 ,获得积分20
14秒前
午木完成签到,获得积分10
15秒前
冯宇完成签到,获得积分10
15秒前
Jj完成签到,获得积分10
15秒前
cxjie320完成签到,获得积分10
15秒前
1111完成签到,获得积分10
16秒前
啦哈啦哈啦完成签到,获得积分10
17秒前
愉快涵菱发布了新的文献求助10
17秒前
x_x完成签到,获得积分10
18秒前
甜甜灵槐完成签到 ,获得积分10
18秒前
18秒前
todo完成签到,获得积分10
19秒前
天阳完成签到,获得积分10
19秒前
黎黎原上草完成签到,获得积分10
20秒前
理想三寻完成签到,获得积分10
20秒前
皑似山上雪完成签到,获得积分10
20秒前
嗨喽完成签到,获得积分10
21秒前
知了完成签到,获得积分10
21秒前
过奖啦完成签到,获得积分10
21秒前
传统的数据线完成签到,获得积分10
21秒前
马俊豪发布了新的文献求助10
21秒前
22秒前
卡布达完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304495
求助须知:如何正确求助?哪些是违规求助? 4450995
关于积分的说明 13850260
捐赠科研通 4338051
什么是DOI,文献DOI怎么找? 2381778
邀请新用户注册赠送积分活动 1376865
关于科研通互助平台的介绍 1344153