Physiologically-Based Pharmacokinetic Modelling of Entrectinib Parent and Active Metabolite to Support Regulatory Decision-Making

代谢物 人体生理学 临床化学 药代动力学 药理学 活性代谢物 医学 基于生理学的药代动力学模型 化学 计算生物学 内科学 生物
作者
Nassim Djebli,Vincent Buchheit,Neil Parrott,Elena Guerini,Yumi Cleary,Stephen Fowler,Nicolas Frey,Li Yu,François Mercier,Alex Phipps,Georgina Meneses‐Lorente
出处
期刊:European Journal of Drug Metabolism and Pharmacokinetics [Springer Nature]
卷期号:46 (6): 779-791 被引量:9
标识
DOI:10.1007/s13318-021-00714-z
摘要

Background and Objective Entrectinib is a selective inhibitor of ROS1/TRK/ALK kinases, recently approved for oncology indications. Entrectinib is predominantly cleared by cytochrome P450 (CYP) 3A4, and modulation of CYP3A enzyme activity profoundly alters the pharmacokinetics of both entrectinib and its active metabolite M5. We describe development of a combined physiologically based pharmacokinetic (PBPK) model for entrectinib and M5 to support dosing recommendations when entrectinib is co-administered with CYP3A4 inhibitors or inducers. Methods A PBPK model was established in Simcyp® Simulator. The initial model based on in vitro–in vivo extrapolation was refined using sensitivity analysis and non-linear mixed effects modeling to optimize parameter estimates and to improve model fit to data from a clinical drug–drug interaction study with the strong CYP3A4 inhibitor, itraconazole. The model was subsequently qualified against clinical data, and the final qualified model used to simulate the effects of moderate to strong CYP3A4 inhibitors and inducers on entrectinib and M5 pharmacokinetics. Results The final model showed good predictive performance for entrectinib and M5, meeting commonly used predictive performance acceptance criteria in each case. The model predicted that co-administration of various moderate CYP3A4 inhibitors (verapamil, erythromycin, clarithromycin, fluconazole, and diltiazem) would result in an average increase in entrectinib exposure between 2.2- and 3.1-fold, with corresponding average increases for M5 of approximately 2-fold. Co-administration of moderate CYP3A4 inducers (efavirenz, carbamazepine, phenytoin) was predicted to result in an average decrease in entrectinib exposure between 45 and 79%, with corresponding average decreases for M5 of approximately 50%. Conclusions The model simulations were used to derive dosing recommendations for co-administering entrectinib with CYP3A4 inhibitors or inducers. PBPK modeling has been used in lieu of clinical studies to enable regulatory decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助王治豪采纳,获得10
2秒前
幽默尔蓝发布了新的文献求助10
2秒前
4秒前
良辰应助小小怪兽采纳,获得10
4秒前
Bilipear发布了新的文献求助10
5秒前
6秒前
7秒前
tier3完成签到,获得积分10
9秒前
HCLonely应助冷傲的迎南采纳,获得10
9秒前
pluto应助AAA郭哥汽修采纳,获得10
10秒前
cyrong发布了新的文献求助10
10秒前
13秒前
领导范儿应助越幸运采纳,获得10
14秒前
张瀚文完成签到,获得积分10
15秒前
Hello应助xiehexin采纳,获得20
15秒前
lin发布了新的文献求助10
16秒前
道友且慢完成签到,获得积分10
16秒前
17秒前
lily完成签到,获得积分10
17秒前
Hello应助朱瑶君采纳,获得10
17秒前
冷傲山彤发布了新的文献求助10
18秒前
20秒前
田様应助简简单单采纳,获得10
20秒前
lily发布了新的文献求助10
22秒前
瑾瑾完成签到,获得积分10
23秒前
Friday发布了新的文献求助10
23秒前
iFaceDOG关注了科研通微信公众号
24秒前
独特的友琴完成签到 ,获得积分10
25秒前
26秒前
小研发布了新的文献求助10
27秒前
小马完成签到,获得积分10
27秒前
羞涩的念寒完成签到,获得积分20
28秒前
28秒前
爆米花应助xiehexin采纳,获得10
28秒前
冷傲芷雪完成签到 ,获得积分10
29秒前
31秒前
jackwang完成签到,获得积分10
32秒前
贺豪完成签到 ,获得积分10
33秒前
皇额娘她推了熹娘娘完成签到 ,获得积分10
33秒前
脑洞疼应助小研采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283