Deep Multiple Instance Hashing for Fast Multi-Object Image Search

图像检索 计算机科学 散列函数 人工智能 对象(语法) 模式识别(心理学) 目标检测 图像自动标注 图像(数学) 计算机安全
作者
Wanqing Zhao,Ziyu Guan,Hangzai Luo,Jinye Peng,Jianping Fan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7995-8007 被引量:11
标识
DOI:10.1109/tip.2021.3112011
摘要

Multi-keyword query is widely supported in text search engines. However, an analogue in image retrieval systems, multi-object query, is rarely studied. Meanwhile, traditional object-based image retrieval methods often involve multiple steps separately. In this work, we propose a weakly-supervised Deep Multiple Instance Hashing (DMIH) approach for multi-object image retrieval. Our DMIH approach, which leverages a popular CNN model to build the end-to-end relation between a raw image and the binary hash codes of its multiple objects, can support multi-object queries effectively and integrate object detection with hashing learning seamlessly. We treat object detection as a binary multiple instance learning (MIL) problem and such instances are automatically extracted from multi-scale convolutional feature maps. We also design a conditional random field (CRF) module to capture both the semantic and spatial relations among different class labels. For hashing training, we sample image pairs to learn their semantic relationships in terms of hash codes of the most probable proposals for owned labels as guided by object predictors. The two objectives benefit each other in a multi-task learning scheme. Finally, a two-level inverted index method is proposed to further speed up the retrieval of multi-object queries. Our DMIH approach outperforms state-of-the-arts on public benchmarks for object-based image retrieval and achieves promising results for multi-object queries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚又发布了新的文献求助10
刚刚
3秒前
ice完成签到 ,获得积分10
5秒前
乖巧的菜猪完成签到,获得积分10
5秒前
6秒前
7秒前
阿航完成签到,获得积分10
7秒前
G1997完成签到 ,获得积分10
7秒前
斯文败类应助科研小狗采纳,获得10
8秒前
iNk应助钢笔采纳,获得20
11秒前
LHJZS发布了新的文献求助10
11秒前
1234567890发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
略略略完成签到 ,获得积分10
15秒前
有魅力的沧海完成签到 ,获得积分10
17秒前
18秒前
19秒前
科研小狗发布了新的文献求助10
20秒前
天天快乐应助余姚采纳,获得10
20秒前
温暖砖头发布了新的文献求助10
21秒前
zen完成签到,获得积分20
22秒前
insissst发布了新的文献求助10
23秒前
Hello应助Priseman采纳,获得10
23秒前
24秒前
24秒前
隐形的含之完成签到,获得积分10
25秒前
庸_完成签到 ,获得积分10
27秒前
CaliU完成签到,获得积分10
27秒前
Lh发布了新的文献求助10
29秒前
xiaobai完成签到 ,获得积分20
30秒前
开放的乐菱完成签到,获得积分10
30秒前
31秒前
32秒前
在水一方应助飞快的笑容采纳,获得10
32秒前
二尖瓣后叶应助Doctor Gao采纳,获得10
33秒前
Amai发布了新的文献求助10
35秒前
37秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946190
关于积分的说明 8528864
捐赠科研通 2621756
什么是DOI,文献DOI怎么找? 1434075
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650718