Multimodal analysis of electroencephalographic and electrooculographic signals

希尔伯特-黄变换 模式识别(心理学) 支持向量机 脑电图 人工智能 计算机科学 信号(编程语言) 主成分分析 特征提取 降维 独立成分分析 眼电学 特征(语言学) 信号处理 语音识别 白噪声 眼球运动 哲学 程序设计语言 精神科 雷达 电信 语言学 心理学
作者
Nesma E. Elsayed,A. S. Tolba,Magdi Zakria Rashad,Tamer Belal,Shahenda Sarhan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:137: 104809-104809
标识
DOI:10.1016/j.compbiomed.2021.104809
摘要

Electrooculography (EOG) is a method to concurrently obtain electrophysiological signals accompanying an Electroencephalography (EEG), where both methods have a common cerebral pattern and imply a similar medical significance. The most common electrophysiological signal source is EOG that contaminated the EEG signal and thereby decreases the accuracy of measurement and the predicated signal strength. In this study, we introduce a method to improve the correction efficiency for EOG artifacts (EOAs) on raw EEG recordings: We retrieve cerebral information from three EEG signals with high system performance and accuracy by applying feature engineering and a novel machine-learning (ML) procedure. To this end, we use two adaptive algorithms for signal decomposition to remove EOAs from multichannel EEG signals: empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD), both using the Hilbert–Huang transform. First, the signal components are decomposed into multiple intrinsic mode functions. Next, statistical feature extraction and dimension reduction using principal component analysis are employed to select optimal feature sets for the ML procedure that is based on classification and regression models. The proposed CEEMD algorithm enhances the accuracy compared to the EMD algorithm and considerably improves the multi-sensory classification of EEG signals. Models of three different categories are applied, and the classification is based on a K-nearest neighbor (k-NN) algorithm, a decision tree (DT) algorithm, and a support vector machine (SVM) algorithm with accuracies of 94% for K-NN, 75% for DT, and 69% for SVM. For each classification model, a regression learner is used to assist as an evidence rule for the proposed artificial system and to influence the learning process from classification and regression models. The regression learning algorithms applied include algorithms based on an ensemble of trees (ET), a DT, and a SVM. We find that the ET-based regression model exhibits a determination coefficient R 2 = 1.00 outperforming the other two approaches with R 2 = 0.80 for DT and R 2 = 0.76 for SVM. • The most electrophysiological signals source is (EOG) that contaminated the (EEG) signal, decreased the accuracy of measuring and predicated signals strength • Comparative multimodal analysis for extract EEG cerebral activities prominent features using CEEMD and EMD • Joint Machine learning modeling for improving EOAs correction in the EEG signals using Regression and classification • Classify EEG signals and recover cerebral activities with high performance to enhance the existing techniques for EEG-EOG correction systems. • Improvement in classifying multi-sensory EEG-EOG signal classes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DKW完成签到,获得积分10
刚刚
刚刚
默默的灵寒完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
科研通AI6应助搁浅采纳,获得10
2秒前
2秒前
沙瑞金发布了新的文献求助10
2秒前
里昂123发布了新的文献求助10
2秒前
2秒前
可爱的函函应助NEO采纳,获得10
3秒前
4秒前
lefcard发布了新的文献求助10
4秒前
4秒前
尔雅完成签到,获得积分10
5秒前
山海游轮发布了新的文献求助10
5秒前
jia0发布了新的文献求助10
5秒前
5秒前
站住辣条完成签到,获得积分10
5秒前
chelsea完成签到,获得积分10
6秒前
共享精神应助tsuki采纳,获得30
6秒前
betty发布了新的文献求助10
6秒前
IceyCNZ发布了新的文献求助10
6秒前
6秒前
向北游发布了新的文献求助20
7秒前
WTT发布了新的文献求助10
7秒前
小王同志完成签到,获得积分10
8秒前
8秒前
Hello应助GeneYang采纳,获得10
8秒前
超级盼海完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
称心元枫发布了新的文献求助10
9秒前
9秒前
李lj发布了新的文献求助10
10秒前
10秒前
10秒前
yangxt-iga发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637