希尔伯特-黄变换
模式识别(心理学)
支持向量机
脑电图
人工智能
计算机科学
信号(编程语言)
主成分分析
特征提取
降维
独立成分分析
眼电学
特征(语言学)
信号处理
语音识别
白噪声
眼球运动
哲学
程序设计语言
精神科
雷达
电信
语言学
心理学
作者
Nesma E. Elsayed,A. S. Tolba,Magdi Zakria Rashad,Tamer Belal,Shahenda Sarhan
标识
DOI:10.1016/j.compbiomed.2021.104809
摘要
Electrooculography (EOG) is a method to concurrently obtain electrophysiological signals accompanying an Electroencephalography (EEG), where both methods have a common cerebral pattern and imply a similar medical significance. The most common electrophysiological signal source is EOG that contaminated the EEG signal and thereby decreases the accuracy of measurement and the predicated signal strength. In this study, we introduce a method to improve the correction efficiency for EOG artifacts (EOAs) on raw EEG recordings: We retrieve cerebral information from three EEG signals with high system performance and accuracy by applying feature engineering and a novel machine-learning (ML) procedure. To this end, we use two adaptive algorithms for signal decomposition to remove EOAs from multichannel EEG signals: empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD), both using the Hilbert–Huang transform. First, the signal components are decomposed into multiple intrinsic mode functions. Next, statistical feature extraction and dimension reduction using principal component analysis are employed to select optimal feature sets for the ML procedure that is based on classification and regression models. The proposed CEEMD algorithm enhances the accuracy compared to the EMD algorithm and considerably improves the multi-sensory classification of EEG signals. Models of three different categories are applied, and the classification is based on a K-nearest neighbor (k-NN) algorithm, a decision tree (DT) algorithm, and a support vector machine (SVM) algorithm with accuracies of 94% for K-NN, 75% for DT, and 69% for SVM. For each classification model, a regression learner is used to assist as an evidence rule for the proposed artificial system and to influence the learning process from classification and regression models. The regression learning algorithms applied include algorithms based on an ensemble of trees (ET), a DT, and a SVM. We find that the ET-based regression model exhibits a determination coefficient R 2 = 1.00 outperforming the other two approaches with R 2 = 0.80 for DT and R 2 = 0.76 for SVM. • The most electrophysiological signals source is (EOG) that contaminated the (EEG) signal, decreased the accuracy of measuring and predicated signals strength • Comparative multimodal analysis for extract EEG cerebral activities prominent features using CEEMD and EMD • Joint Machine learning modeling for improving EOAs correction in the EEG signals using Regression and classification • Classify EEG signals and recover cerebral activities with high performance to enhance the existing techniques for EEG-EOG correction systems. • Improvement in classifying multi-sensory EEG-EOG signal classes
科研通智能强力驱动
Strongly Powered by AbleSci AI