Multimodal analysis of electroencephalographic and electrooculographic signals

希尔伯特-黄变换 模式识别(心理学) 支持向量机 脑电图 人工智能 计算机科学 信号(编程语言) 主成分分析 特征提取 降维 独立成分分析 眼电学 特征(语言学) 信号处理 语音识别 白噪声 眼球运动 哲学 程序设计语言 精神科 雷达 电信 语言学 心理学
作者
Nesma E. Elsayed,A. S. Tolba,Magdi Zakria Rashad,Tamer Belal,Shahenda Sarhan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:137: 104809-104809
标识
DOI:10.1016/j.compbiomed.2021.104809
摘要

Electrooculography (EOG) is a method to concurrently obtain electrophysiological signals accompanying an Electroencephalography (EEG), where both methods have a common cerebral pattern and imply a similar medical significance. The most common electrophysiological signal source is EOG that contaminated the EEG signal and thereby decreases the accuracy of measurement and the predicated signal strength. In this study, we introduce a method to improve the correction efficiency for EOG artifacts (EOAs) on raw EEG recordings: We retrieve cerebral information from three EEG signals with high system performance and accuracy by applying feature engineering and a novel machine-learning (ML) procedure. To this end, we use two adaptive algorithms for signal decomposition to remove EOAs from multichannel EEG signals: empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD), both using the Hilbert–Huang transform. First, the signal components are decomposed into multiple intrinsic mode functions. Next, statistical feature extraction and dimension reduction using principal component analysis are employed to select optimal feature sets for the ML procedure that is based on classification and regression models. The proposed CEEMD algorithm enhances the accuracy compared to the EMD algorithm and considerably improves the multi-sensory classification of EEG signals. Models of three different categories are applied, and the classification is based on a K-nearest neighbor (k-NN) algorithm, a decision tree (DT) algorithm, and a support vector machine (SVM) algorithm with accuracies of 94% for K-NN, 75% for DT, and 69% for SVM. For each classification model, a regression learner is used to assist as an evidence rule for the proposed artificial system and to influence the learning process from classification and regression models. The regression learning algorithms applied include algorithms based on an ensemble of trees (ET), a DT, and a SVM. We find that the ET-based regression model exhibits a determination coefficient R 2 = 1.00 outperforming the other two approaches with R 2 = 0.80 for DT and R 2 = 0.76 for SVM. • The most electrophysiological signals source is (EOG) that contaminated the (EEG) signal, decreased the accuracy of measuring and predicated signals strength • Comparative multimodal analysis for extract EEG cerebral activities prominent features using CEEMD and EMD • Joint Machine learning modeling for improving EOAs correction in the EEG signals using Regression and classification • Classify EEG signals and recover cerebral activities with high performance to enhance the existing techniques for EEG-EOG correction systems. • Improvement in classifying multi-sensory EEG-EOG signal classes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momo发布了新的文献求助30
1秒前
2秒前
可爱的函函应助李小二采纳,获得10
3秒前
完美的橘子完成签到,获得积分20
3秒前
4秒前
chunhui发布了新的文献求助10
4秒前
6秒前
大王关注了科研通微信公众号
7秒前
霜降发布了新的文献求助10
7秒前
8秒前
lambor完成签到,获得积分10
8秒前
9秒前
9秒前
CCCr完成签到,获得积分10
10秒前
BAMM发布了新的文献求助10
10秒前
11秒前
皮皮完成签到,获得积分10
11秒前
13秒前
桐桐应助夏哈哈采纳,获得10
13秒前
飞逸兴于管弦完成签到,获得积分10
13秒前
仁爱小之完成签到,获得积分10
14秒前
_呱_应助研友_xnEOX8采纳,获得30
14秒前
lijiajie发布了新的文献求助10
15秒前
XSH发布了新的文献求助50
15秒前
皮皮发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
chitin chu完成签到,获得积分10
17秒前
feizao完成签到,获得积分10
17秒前
17秒前
胡萝卜z发布了新的文献求助10
18秒前
18秒前
慕青应助强健的雅霜采纳,获得10
19秒前
123完成签到,获得积分10
19秒前
刘小小123发布了新的文献求助10
19秒前
曹文鹏发布了新的文献求助10
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325577
求助须知:如何正确求助?哪些是违规求助? 2956275
关于积分的说明 8579868
捐赠科研通 2634243
什么是DOI,文献DOI怎么找? 1441821
科研通“疑难数据库(出版商)”最低求助积分说明 667952
邀请新用户注册赠送积分活动 654755