Multimodal analysis of electroencephalographic and electrooculographic signals

希尔伯特-黄变换 模式识别(心理学) 支持向量机 脑电图 人工智能 计算机科学 信号(编程语言) 主成分分析 特征提取 降维 独立成分分析 眼电学 特征(语言学) 信号处理 语音识别 白噪声 眼球运动 哲学 程序设计语言 精神科 雷达 电信 语言学 心理学
作者
Nesma E. Elsayed,A. S. Tolba,Magdi Zakria Rashad,Tamer Belal,Shahenda Sarhan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:137: 104809-104809
标识
DOI:10.1016/j.compbiomed.2021.104809
摘要

Electrooculography (EOG) is a method to concurrently obtain electrophysiological signals accompanying an Electroencephalography (EEG), where both methods have a common cerebral pattern and imply a similar medical significance. The most common electrophysiological signal source is EOG that contaminated the EEG signal and thereby decreases the accuracy of measurement and the predicated signal strength. In this study, we introduce a method to improve the correction efficiency for EOG artifacts (EOAs) on raw EEG recordings: We retrieve cerebral information from three EEG signals with high system performance and accuracy by applying feature engineering and a novel machine-learning (ML) procedure. To this end, we use two adaptive algorithms for signal decomposition to remove EOAs from multichannel EEG signals: empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD), both using the Hilbert–Huang transform. First, the signal components are decomposed into multiple intrinsic mode functions. Next, statistical feature extraction and dimension reduction using principal component analysis are employed to select optimal feature sets for the ML procedure that is based on classification and regression models. The proposed CEEMD algorithm enhances the accuracy compared to the EMD algorithm and considerably improves the multi-sensory classification of EEG signals. Models of three different categories are applied, and the classification is based on a K-nearest neighbor (k-NN) algorithm, a decision tree (DT) algorithm, and a support vector machine (SVM) algorithm with accuracies of 94% for K-NN, 75% for DT, and 69% for SVM. For each classification model, a regression learner is used to assist as an evidence rule for the proposed artificial system and to influence the learning process from classification and regression models. The regression learning algorithms applied include algorithms based on an ensemble of trees (ET), a DT, and a SVM. We find that the ET-based regression model exhibits a determination coefficient R 2 = 1.00 outperforming the other two approaches with R 2 = 0.80 for DT and R 2 = 0.76 for SVM. • The most electrophysiological signals source is (EOG) that contaminated the (EEG) signal, decreased the accuracy of measuring and predicated signals strength • Comparative multimodal analysis for extract EEG cerebral activities prominent features using CEEMD and EMD • Joint Machine learning modeling for improving EOAs correction in the EEG signals using Regression and classification • Classify EEG signals and recover cerebral activities with high performance to enhance the existing techniques for EEG-EOG correction systems. • Improvement in classifying multi-sensory EEG-EOG signal classes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
优雅的夜柳完成签到,获得积分20
3秒前
3秒前
3秒前
995完成签到 ,获得积分10
3秒前
zhm发布了新的文献求助30
3秒前
慕青应助微凉采纳,获得10
4秒前
zhangman完成签到,获得积分10
5秒前
传奇3应助lucas采纳,获得10
5秒前
李健应助比巴伯采纳,获得10
6秒前
Yixiaofei发布了新的文献求助100
6秒前
小辣里发布了新的文献求助10
6秒前
Research完成签到 ,获得积分10
7秒前
zzx完成签到 ,获得积分10
7秒前
7秒前
7秒前
wpp完成签到,获得积分10
7秒前
heyihao应助hiipaige采纳,获得10
7秒前
科目三应助大头采纳,获得10
8秒前
8秒前
9秒前
我和狂三贴贴完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助熬夜大王采纳,获得10
12秒前
123完成签到,获得积分10
13秒前
13秒前
小辣里完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
桐桐应助realyxy采纳,获得50
16秒前
CodeCraft应助Liu采纳,获得30
17秒前
可积发布了新的文献求助10
18秒前
meimei发布了新的文献求助10
19秒前
liufy关注了科研通微信公众号
19秒前
jahcenia完成签到,获得积分10
20秒前
xy完成签到,获得积分10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126