Multimodal analysis of electroencephalographic and electrooculographic signals

希尔伯特-黄变换 模式识别(心理学) 支持向量机 脑电图 人工智能 计算机科学 信号(编程语言) 主成分分析 特征提取 降维 独立成分分析 眼电学 特征(语言学) 信号处理 语音识别 白噪声 眼球运动 哲学 程序设计语言 精神科 雷达 电信 语言学 心理学
作者
Nesma E. Elsayed,A. S. Tolba,Magdi Zakria Rashad,Tamer Belal,Shahenda Sarhan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:137: 104809-104809
标识
DOI:10.1016/j.compbiomed.2021.104809
摘要

Electrooculography (EOG) is a method to concurrently obtain electrophysiological signals accompanying an Electroencephalography (EEG), where both methods have a common cerebral pattern and imply a similar medical significance. The most common electrophysiological signal source is EOG that contaminated the EEG signal and thereby decreases the accuracy of measurement and the predicated signal strength. In this study, we introduce a method to improve the correction efficiency for EOG artifacts (EOAs) on raw EEG recordings: We retrieve cerebral information from three EEG signals with high system performance and accuracy by applying feature engineering and a novel machine-learning (ML) procedure. To this end, we use two adaptive algorithms for signal decomposition to remove EOAs from multichannel EEG signals: empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD), both using the Hilbert–Huang transform. First, the signal components are decomposed into multiple intrinsic mode functions. Next, statistical feature extraction and dimension reduction using principal component analysis are employed to select optimal feature sets for the ML procedure that is based on classification and regression models. The proposed CEEMD algorithm enhances the accuracy compared to the EMD algorithm and considerably improves the multi-sensory classification of EEG signals. Models of three different categories are applied, and the classification is based on a K-nearest neighbor (k-NN) algorithm, a decision tree (DT) algorithm, and a support vector machine (SVM) algorithm with accuracies of 94% for K-NN, 75% for DT, and 69% for SVM. For each classification model, a regression learner is used to assist as an evidence rule for the proposed artificial system and to influence the learning process from classification and regression models. The regression learning algorithms applied include algorithms based on an ensemble of trees (ET), a DT, and a SVM. We find that the ET-based regression model exhibits a determination coefficient R 2 = 1.00 outperforming the other two approaches with R 2 = 0.80 for DT and R 2 = 0.76 for SVM. • The most electrophysiological signals source is (EOG) that contaminated the (EEG) signal, decreased the accuracy of measuring and predicated signals strength • Comparative multimodal analysis for extract EEG cerebral activities prominent features using CEEMD and EMD • Joint Machine learning modeling for improving EOAs correction in the EEG signals using Regression and classification • Classify EEG signals and recover cerebral activities with high performance to enhance the existing techniques for EEG-EOG correction systems. • Improvement in classifying multi-sensory EEG-EOG signal classes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZ0904发布了新的文献求助10
刚刚
顾矜应助博ge采纳,获得10
2秒前
2秒前
Lotus发布了新的文献求助10
3秒前
4秒前
仁爱仙人掌完成签到,获得积分10
6秒前
ywang发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
ewqw关注了科研通微信公众号
9秒前
曦小蕊完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
奋斗灵波发布了新的文献求助10
11秒前
药学牛马发布了新的文献求助10
11秒前
11秒前
科研通AI5应助WZ0904采纳,获得10
12秒前
叶未晞yi发布了新的文献求助10
13秒前
ipeakkka发布了新的文献求助10
14秒前
Jzhang应助迷人的映雁采纳,获得10
14秒前
14秒前
zzz完成签到,获得积分10
15秒前
15秒前
小安发布了新的文献求助10
15秒前
16秒前
叶未晞yi完成签到,获得积分10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
kilig应助科研通管家采纳,获得10
19秒前
19秒前
华仔应助科研通管家采纳,获得30
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
博ge发布了新的文献求助10
21秒前
22秒前
葶儿发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824