Robust CSI-Based Human Activity Recognition With Augment Few Shot Learning

活动识别 计算机科学 人工智能 弹丸 加强 模式识别(心理学) 计算机视觉 材料科学 语言学 哲学 冶金
作者
Yujie Wang,Yao Lu,Ying Wang,Yong Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24297-24308 被引量:21
标识
DOI:10.1109/jsen.2021.3111030
摘要

With the development of Internet of Things technology, Channel State Information (CSI) based human activity recognition (HAR) plays an important role in Human-Computer Interaction and achieves considerable advancements over recent years. However, when the trained model is applied to recognize new activity categories or recognizing new users in new scenarios, the recognition performance of general methods will dramatically decline. And re-collecting adequate new activity categories' samples to train the HAR model to adapt to the new situation will consume a lot of time and human effort. To overcome this challenge, we propose a framework, Augment Few Shot Learning-based Human Activity Recognition (AFSL-HAR), which can achieve significant performance in recognizing new categories through a small amount of samples to fine-tune the model parameters and avoid retraining the network from scratch again. And besides, in order to improve the robustness of AFSL-HAR, we design a Feature Wasserstein Generative Adversarial Network (FWGAN) module, which can synthesize diverse samples to help the recognition model learn more sharper classification boundaries. Specifically, the FWGAN module incorporates a feature extractor to realize converging with a fewer number of training samples, and takes an improved discriminator to enhance system performance. The experimental results demonstrate that AFSL-HAR can achieve accuracy of 98.9% and 94.7% when recognizing new activities using few samples for each category on the public data set and self-made data set, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的一曲完成签到,获得积分20
刚刚
hm发布了新的文献求助10
1秒前
hhhhh完成签到 ,获得积分10
2秒前
cy完成签到,获得积分10
2秒前
ynn完成签到,获得积分20
3秒前
3秒前
3秒前
chen完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
幽默的尔冬完成签到,获得积分10
4秒前
ucas应助追风少年采纳,获得10
4秒前
小米完成签到,获得积分10
4秒前
巧克力饼干完成签到,获得积分10
4秒前
yatou完成签到,获得积分10
4秒前
我有魔鬼大头应助yinyin采纳,获得40
5秒前
sy发布了新的文献求助10
6秒前
6秒前
dihaha完成签到,获得积分10
6秒前
七木完成签到,获得积分10
6秒前
7秒前
7秒前
nl不分完成签到,获得积分10
7秒前
7秒前
way完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
欧维发布了新的文献求助10
9秒前
打烊发布了新的文献求助10
9秒前
yd完成签到,获得积分10
10秒前
李爱国应助caidun采纳,获得10
10秒前
renxiya发布了新的文献求助10
10秒前
王乐乐发布了新的文献求助10
10秒前
SMZ应助读研读研采纳,获得10
11秒前
格子完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490