Robust CSI-Based Human Activity Recognition With Augment Few Shot Learning

活动识别 计算机科学 人工智能 弹丸 加强 模式识别(心理学) 计算机视觉 材料科学 语言学 哲学 冶金
作者
Yujie Wang,Yao Lu,Ying Wang,Yong Zhang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24297-24308 被引量:21
标识
DOI:10.1109/jsen.2021.3111030
摘要

With the development of Internet of Things technology, Channel State Information (CSI) based human activity recognition (HAR) plays an important role in Human-Computer Interaction and achieves considerable advancements over recent years. However, when the trained model is applied to recognize new activity categories or recognizing new users in new scenarios, the recognition performance of general methods will dramatically decline. And re-collecting adequate new activity categories' samples to train the HAR model to adapt to the new situation will consume a lot of time and human effort. To overcome this challenge, we propose a framework, Augment Few Shot Learning-based Human Activity Recognition (AFSL-HAR), which can achieve significant performance in recognizing new categories through a small amount of samples to fine-tune the model parameters and avoid retraining the network from scratch again. And besides, in order to improve the robustness of AFSL-HAR, we design a Feature Wasserstein Generative Adversarial Network (FWGAN) module, which can synthesize diverse samples to help the recognition model learn more sharper classification boundaries. Specifically, the FWGAN module incorporates a feature extractor to realize converging with a fewer number of training samples, and takes an improved discriminator to enhance system performance. The experimental results demonstrate that AFSL-HAR can achieve accuracy of 98.9% and 94.7% when recognizing new activities using few samples for each category on the public data set and self-made data set, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光彩虹小白马完成签到,获得积分20
刚刚
LIUUU完成签到,获得积分10
刚刚
传奇3应助like采纳,获得10
刚刚
1秒前
wg发布了新的文献求助10
1秒前
慕言完成签到 ,获得积分10
2秒前
2秒前
田様应助zouzou采纳,获得10
2秒前
2秒前
sssxxx完成签到,获得积分10
2秒前
3秒前
斩渔发布了新的文献求助10
4秒前
xyy完成签到,获得积分10
4秒前
Niki发布了新的文献求助20
4秒前
完美世界应助炙热果汁采纳,获得10
4秒前
螺内酯发布了新的文献求助10
4秒前
4秒前
巧克力完成签到,获得积分10
5秒前
5秒前
Maxwell完成签到,获得积分10
5秒前
Wen发布了新的文献求助10
5秒前
薏米发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
郭濹涵发布了新的文献求助10
6秒前
7秒前
阳光彩虹小白马关注了科研通微信公众号
7秒前
星辰大海应助QIQI采纳,获得10
7秒前
875259完成签到,获得积分10
8秒前
8秒前
ding应助恩恩天天开心采纳,获得10
8秒前
打打应助现代的糖豆采纳,获得10
8秒前
科目三应助第七个星球采纳,获得10
8秒前
Sue完成签到 ,获得积分10
8秒前
英姑应助HEANZ采纳,获得10
8秒前
梧桐完成签到,获得积分10
8秒前
盒子完成签到,获得积分10
8秒前
Yuki发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894