Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2

生物 负二项分布 计算生物学 计算机科学 统计 数学 泊松分布
作者
Shiyi Liu,Zitao Wang,Ronghui Zhu,Feiyan Wang,Yanxiang Cheng,Yeqiang Liu
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (175) 被引量:177
标识
DOI:10.3791/62528
摘要

RNA sequencing (RNA-seq) is one of the most widely used technologies in transcriptomics as it can reveal the relationship between the genetic alteration and complex biological processes and has great value in diagnostics, prognostics, and therapeutics of tumors. Differential analysis of RNA-seq data is crucial to identify aberrant transcriptions, and limma, EdgeR and DESeq2 are efficient tools for differential analysis. However, RNA-seq differential analysis requires certain skills with R language and the ability to choose an appropriate method, which is lacking in the curriculum of medical education. Herein, we provide the detailed protocol to identify differentially expressed genes (DEGs) between cholangiocarcinoma (CHOL) and normal tissues through limma, DESeq2 and EdgeR, respectively, and the results are shown in volcano plots and Venn diagrams. The three protocols of limma, DESeq2 and EdgeR are similar but have different steps among the processes of the analysis. For example, a linear model is used for statistics in limma, while the negative binomial distribution is used in edgeR and DESeq2. Additionally, the normalized RNA-seq count data is necessary for EdgeR and limma but is not necessary for DESeq2. Here, we provide a detailed protocol for three differential analysis methods: limma, EdgeR and DESeq2. The results of the three methods are partly overlapping. All three methods have their own advantages, and the choice of method only depends on the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珂珂子完成签到,获得积分10
1秒前
1秒前
3秒前
zjxu完成签到,获得积分20
4秒前
BREEZE发布了新的文献求助10
5秒前
丫头完成签到,获得积分10
5秒前
6秒前
机电虎发布了新的文献求助30
7秒前
研友_8RyzBZ发布了新的文献求助10
7秒前
9秒前
9秒前
科目三应助beiest采纳,获得10
9秒前
9秒前
12秒前
完美世界应助斯文的傲珊采纳,获得10
12秒前
刘刘发布了新的文献求助10
13秒前
13秒前
XiHuanChi完成签到,获得积分10
13秒前
机电虎完成签到,获得积分20
14秒前
14秒前
upupeasymoney发布了新的文献求助10
14秒前
17秒前
17秒前
18秒前
橙花完成签到 ,获得积分10
18秒前
18秒前
奥特曼发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
咕噜咕噜发布了新的文献求助10
20秒前
21秒前
dqq发布了新的文献求助10
22秒前
张小虾完成签到,获得积分10
22秒前
丫头发布了新的文献求助10
23秒前
28秒前
斯文败类应助Aaron_Leclerc采纳,获得10
28秒前
qq.com完成签到,获得积分10
30秒前
Jacky77发布了新的文献求助10
31秒前
32秒前
Sylus发布了新的文献求助10
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959141
求助须知:如何正确求助?哪些是违规求助? 3505468
关于积分的说明 11123941
捐赠科研通 3237159
什么是DOI,文献DOI怎么找? 1788988
邀请新用户注册赠送积分活动 871478
科研通“疑难数据库(出版商)”最低求助积分说明 802824