Tracking nitrate sources in agricultural-urban watershed using dual stable isotope and Bayesian mixing model approach: Considering N transformation by Lagrangian sampling

环境科学 地表水 水文学(农业) 污染 水质 稳定同位素比值 硝化作用 地下水 肥料 肥料 营养污染 环境工程 氮气 生态学 化学 地质学 物理 岩土工程 有机化学 量子力学 生物
作者
Hui-Seong Ryu,Tae‐Woo Kang,Kyung‐Hyun Kim,Taehui Nam,Yeong-un Han,Jihyun Kim,Min-Seob Kim,Hyejung Lim,Kyungae Seo,Kyoung‐Hee Lee,Suk-Hee Yoon,Seung‐Hoon Hwang,Eun Hye Na,Jung Ho Lee
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113693-113693 被引量:16
标识
DOI:10.1016/j.jenvman.2021.113693
摘要

A dual isotopes approach and the Bayesian isotope mixing model were applied to trace nitrogen pollution sources and to quantify their relative contribution to river water quality. We focused on two points to enhance the applicability of the method: 1) Direct measurement on the end-members to distinguish “sewage” and “manure” which used to be grouped in one pollution source as their isotope ranges overlap; 2) The Lagrangian sampling method was applied to consider the transport of nitrogen pollutants in a long river so that any fractionation process can be dealt with in the given Bayesian modeling framework. The results of the analysis confirmed the NO3− isotope composition in the river of interest to be within the range of NO3− with origins in “NH4+ in fertilizer”, “Soil N”, and “Manure and sewage” pollution. This suggests that nitrogen pollution is mostly attributed to anthropogenic sources. The δ18O NO3 value follows the range +2.5∼+15.0‰, implying that NO3− in the river is mainly derived from nitrification, and possible nitrification in groundwater or waterfront other than surface water. The ratio of the concentration of δ15N NO3 to that of δ18O NO3, and the corresponding regression equation indicates that the denitrification effect in surface water was insignificant during the study period. From the results of the contribution ratio of each source, improving the water quality of the discharge from the sewage treatment plants was proved to be the key factor to reduce nitrogen pollution in the river.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉宋海苔卷完成签到,获得积分10
刚刚
HEIKU应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得20
1秒前
rosalieshi应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
gj2221423应助科研通管家采纳,获得20
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
rosalieshi应助科研通管家采纳,获得30
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
eternity136应助科研通管家采纳,获得10
2秒前
keKEYANTONG应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得20
2秒前
Cloud应助科研通管家采纳,获得20
2秒前
橙花发布了新的文献求助10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
rosalieshi应助科研通管家采纳,获得60
2秒前
HEIKU应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得10
3秒前
eternity136应助科研通管家采纳,获得10
3秒前
远方的蓝风铃完成签到,获得积分20
3秒前
5秒前
暮雨完成签到 ,获得积分10
5秒前
三里墩头完成签到,获得积分10
8秒前
Gru完成签到,获得积分10
8秒前
xiaohu完成签到,获得积分10
10秒前
饺子生面包完成签到 ,获得积分10
10秒前
海绵宝宝完成签到,获得积分10
10秒前
junxi发布了新的文献求助10
11秒前
11秒前
所所应助敏感的盼夏采纳,获得10
12秒前
小城故事和冰雨完成签到,获得积分10
14秒前
lhf完成签到,获得积分10
14秒前
Feng5945发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011