Tracking nitrate sources in agricultural-urban watershed using dual stable isotope and Bayesian mixing model approach: Considering N transformation by Lagrangian sampling

环境科学 地表水 水文学(农业) 污染 水质 稳定同位素比值 硝化作用 地下水 肥料 肥料 营养污染 环境工程 氮气 生态学 化学 地质学 物理 岩土工程 有机化学 量子力学 生物
作者
Hui-Seong Ryu,Tae‐Woo Kang,Kyung‐Hyun Kim,Taehui Nam,Yeong-un Han,Jihyun Kim,Min-Seob Kim,Hyejung Lim,Kyungae Seo,Kyoung‐Hee Lee,Suk-Hee Yoon,Seung‐Hoon Hwang,Eun Hye Na,Jung Ho Lee
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:300: 113693-113693 被引量:16
标识
DOI:10.1016/j.jenvman.2021.113693
摘要

A dual isotopes approach and the Bayesian isotope mixing model were applied to trace nitrogen pollution sources and to quantify their relative contribution to river water quality. We focused on two points to enhance the applicability of the method: 1) Direct measurement on the end-members to distinguish “sewage” and “manure” which used to be grouped in one pollution source as their isotope ranges overlap; 2) The Lagrangian sampling method was applied to consider the transport of nitrogen pollutants in a long river so that any fractionation process can be dealt with in the given Bayesian modeling framework. The results of the analysis confirmed the NO3− isotope composition in the river of interest to be within the range of NO3− with origins in “NH4+ in fertilizer”, “Soil N”, and “Manure and sewage” pollution. This suggests that nitrogen pollution is mostly attributed to anthropogenic sources. The δ18O NO3 value follows the range +2.5∼+15.0‰, implying that NO3− in the river is mainly derived from nitrification, and possible nitrification in groundwater or waterfront other than surface water. The ratio of the concentration of δ15N NO3 to that of δ18O NO3, and the corresponding regression equation indicates that the denitrification effect in surface water was insignificant during the study period. From the results of the contribution ratio of each source, improving the water quality of the discharge from the sewage treatment plants was proved to be the key factor to reduce nitrogen pollution in the river.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助xu采纳,获得10
刚刚
Xu完成签到,获得积分10
刚刚
ExtroGod发布了新的文献求助10
刚刚
仁者无敌完成签到,获得积分10
1秒前
拼搏的小菠萝完成签到,获得积分10
1秒前
宇儿发布了新的文献求助30
2秒前
哌替啶完成签到 ,获得积分10
2秒前
123456发布了新的文献求助10
2秒前
852应助王德发采纳,获得10
3秒前
3秒前
Imogen完成签到,获得积分10
3秒前
clvv完成签到 ,获得积分10
4秒前
架嘉驾发布了新的文献求助10
4秒前
4秒前
GWF完成签到,获得积分10
4秒前
刘嘉欣完成签到,获得积分10
5秒前
5秒前
Whim应助kmkz采纳,获得50
6秒前
我爱科研科研爱我完成签到,获得积分10
6秒前
皮皮完成签到 ,获得积分10
6秒前
复杂雪一完成签到,获得积分10
6秒前
丘比特应助weinaonao采纳,获得20
6秒前
小二郎应助xx采纳,获得10
7秒前
薏米人儿完成签到 ,获得积分10
7秒前
灵巧的以亦完成签到 ,获得积分10
7秒前
7秒前
Joy完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
BEIBEI完成签到,获得积分10
9秒前
北冰石发布了新的文献求助10
10秒前
清蒸鱼发布了新的文献求助10
10秒前
Lucas应助wiaa采纳,获得10
10秒前
drfwjuikesv完成签到,获得积分10
10秒前
10秒前
不加班的小鱼完成签到,获得积分10
10秒前
LLL发布了新的文献求助10
11秒前
希望天下0贩的0应助Passion采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765726
求助须知:如何正确求助?哪些是违规求助? 5562646
关于积分的说明 15410145
捐赠科研通 4900299
什么是DOI,文献DOI怎么找? 2636348
邀请新用户注册赠送积分活动 1584578
关于科研通互助平台的介绍 1539835