Automatic multi-plaque tracking and segmentation in ultrasonic videos

人工智能 计算机视觉 计算机科学 跟踪(教育) 分割 掷骰子 视频跟踪 雅卡索引 相似性(几何) Sørensen–骰子系数 主动外观模型 图像分割 模式识别(心理学) 对象(语法) 图像(数学) 数学 教育学 心理学 几何学
作者
Leyin Li,Zhaoyu Hu,Yunqian Huang,Wenqian Zhu,Yuanyuan Wang,Man Chen,Jinhua Yu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:74: 102201-102201 被引量:19
标识
DOI:10.1016/j.media.2021.102201
摘要

Carotid plaque tracking and segmentation in ultrasound videos is the premise for subsequent plaque property evaluation and treatment plan development. However, the task is quite challenging, as it needs to address the problems of poor image quality, plaque shape variations among frames, the existence of multiple plaques, etc. To overcome these challenges, we propose a new automatic multi-plaque tracking and segmentation (AMPTS) framework. AMPTS consists of three modules. The first module is a multi-object detector, in which a Dual Attention U-Net is proposed to detect multiple plaques and vessels simultaneously. The second module is a set of single-object trackers that can utilize the previous tracking results efficiently and achieve stable tracking of the current target by using channel attention and a ranking strategy. To make the first module and the second module work together, a parallel tracking module based on a simplified 'tracking-by-detection' mechanism is proposed to solve the challenge of tracking object variation. Extensive experiments are conducted to compare the proposed method with several state-of-the-art deep learning based methods. The experimental results demonstrate that the proposed method has high accuracy and generalizability with a Dice similarity coefficient of 0.83 which is 0.16, 0.06 and 0.27 greater than MAST (Lai et al., 2020), Track R-CNN (Voigtlaender et al., 2019) and VSD (Yang et al., 2019) respectively and has made significant improvements on seven other indicators. In the additional Testing set 2, our method achieved a Dice similarity coefficient of 0.80, an accuracy of 0.79, a precision of 0.91, a Recall 0.70, a F1 score of 0.79, an AP@0.5 of 0.92, an AP@0.7 of 0.74, and an expected average overlap of 0.79. Numerous ablation studies suggest the effectiveness of each proposed component and the great potential for multiple carotid plaques tracking and segmentation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的嚣完成签到 ,获得积分10
刚刚
不配.应助欣欣采纳,获得10
刚刚
细心行云完成签到,获得积分10
刚刚
刚刚
刚刚
人机完成签到,获得积分10
刚刚
LCC完成签到 ,获得积分10
1秒前
冷酷头箍完成签到 ,获得积分10
2秒前
时尚的初柔完成签到,获得积分10
2秒前
CC完成签到,获得积分10
2秒前
wanci应助朱奕韬采纳,获得10
2秒前
洪汉完成签到,获得积分10
3秒前
潜放完成签到,获得积分10
3秒前
Rein完成签到,获得积分10
3秒前
fwt完成签到,获得积分10
3秒前
3秒前
恸哭的千鸟完成签到,获得积分10
3秒前
马鲛完成签到,获得积分10
4秒前
mq发布了新的文献求助10
4秒前
离岸发布了新的文献求助10
5秒前
panpan完成签到,获得积分20
5秒前
满洲里的雾完成签到,获得积分10
6秒前
落后三颜完成签到,获得积分10
6秒前
嘻嘻丢发布了新的文献求助10
6秒前
十月揽星河完成签到 ,获得积分10
7秒前
LLLLLL完成签到,获得积分20
7秒前
Qyyy完成签到,获得积分10
8秒前
zhx完成签到,获得积分10
8秒前
8秒前
sj完成签到,获得积分10
8秒前
深情海秋完成签到,获得积分10
9秒前
小郭发布了新的文献求助10
10秒前
fff完成签到,获得积分10
10秒前
张起灵发布了新的文献求助10
10秒前
11秒前
LLLLLL发布了新的文献求助10
11秒前
11秒前
泡泡球完成签到,获得积分10
12秒前
12秒前
山茶发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565