Automatic multi-plaque tracking and segmentation in ultrasonic videos

人工智能 计算机视觉 计算机科学 跟踪(教育) 分割 掷骰子 视频跟踪 雅卡索引 相似性(几何) Sørensen–骰子系数 主动外观模型 图像分割 模式识别(心理学) 对象(语法) 图像(数学) 数学 教育学 心理学 几何学
作者
Leyin Li,Zhaoyu Hu,Yunqian Huang,Wenqian Zhu,Yuanyuan Wang,Man Chen,Jinhua Yu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:74: 102201-102201 被引量:23
标识
DOI:10.1016/j.media.2021.102201
摘要

Carotid plaque tracking and segmentation in ultrasound videos is the premise for subsequent plaque property evaluation and treatment plan development. However, the task is quite challenging, as it needs to address the problems of poor image quality, plaque shape variations among frames, the existence of multiple plaques, etc. To overcome these challenges, we propose a new automatic multi-plaque tracking and segmentation (AMPTS) framework. AMPTS consists of three modules. The first module is a multi-object detector, in which a Dual Attention U-Net is proposed to detect multiple plaques and vessels simultaneously. The second module is a set of single-object trackers that can utilize the previous tracking results efficiently and achieve stable tracking of the current target by using channel attention and a ranking strategy. To make the first module and the second module work together, a parallel tracking module based on a simplified 'tracking-by-detection' mechanism is proposed to solve the challenge of tracking object variation. Extensive experiments are conducted to compare the proposed method with several state-of-the-art deep learning based methods. The experimental results demonstrate that the proposed method has high accuracy and generalizability with a Dice similarity coefficient of 0.83 which is 0.16, 0.06 and 0.27 greater than MAST (Lai et al., 2020), Track R-CNN (Voigtlaender et al., 2019) and VSD (Yang et al., 2019) respectively and has made significant improvements on seven other indicators. In the additional Testing set 2, our method achieved a Dice similarity coefficient of 0.80, an accuracy of 0.79, a precision of 0.91, a Recall 0.70, a F1 score of 0.79, an AP@0.5 of 0.92, an AP@0.7 of 0.74, and an expected average overlap of 0.79. Numerous ablation studies suggest the effectiveness of each proposed component and the great potential for multiple carotid plaques tracking and segmentation in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dannnnn发布了新的文献求助10
刚刚
xiaowang完成签到,获得积分10
1秒前
燚燚发布了新的文献求助10
2秒前
2秒前
颜好发布了新的文献求助10
3秒前
隐形曼青应助派大星采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
liyiying发布了新的文献求助10
4秒前
5秒前
张占发布了新的文献求助10
5秒前
研友_X894JZ完成签到 ,获得积分10
6秒前
大模型应助dannnnn采纳,获得10
6秒前
Jinna706完成签到,获得积分10
6秒前
6秒前
丁真爱上芙蓉王完成签到,获得积分20
7秒前
丘比特应助肥妹最励志采纳,获得10
7秒前
yyyrrr发布了新的文献求助10
7秒前
CipherSage应助脆皮小小酥采纳,获得10
8秒前
棋士发布了新的文献求助10
8秒前
隐形的邦布完成签到,获得积分10
9秒前
Amy完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
派大星完成签到,获得积分10
11秒前
12秒前
沉默的玩偶完成签到,获得积分10
12秒前
13秒前
念65发布了新的文献求助10
14秒前
小涵完成签到,获得积分10
14秒前
14秒前
打打应助阿花阿花采纳,获得10
15秒前
15秒前
派大星发布了新的文献求助10
15秒前
16秒前
咲韶完成签到,获得积分10
16秒前
yyyrrr完成签到,获得积分10
16秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609