化学
沸石
催化作用
活动中心
密度泛函理论
吸附
质子化
计算化学
基本反应
动力学
反应机理
热力学
化学物理
物理化学
有机化学
物理
量子力学
离子
作者
Jeroen Van der Mynsbrugge,Alexis T. Bell
标识
DOI:10.1016/j.jcat.2021.08.048
摘要
Zeolites are widely used as catalysts for the processing of petroleum to produce transportation fuels, the synthesis of a wide variety of chemicals, and for the abatement of automotive emissions. These applications have stimulated an interest in describing the mechanism and kinetics for zeolite-catalyzed reactions using theoretical methods. This Mini-review summarizes the author's efforts towards this goal. It is shown that accurate predictions of adsorption and activation enthalpies and entropies requires that several criteria be met. The first is a correct description of the structure of the catalytically active center, as well as the portion of the zeolite framework immediately surrounding the active center and that located far from the active center. Second, the level of density functional theory (DFT) must be sufficiently high to account for the effects of dispersive interactions between the adsorbate, the active center, and the immediately surrounding zeolite atoms. Third, dispersive and coulombic interactions between the atoms in the vicinity of the active center and the balance of the zeolite framework must also be accounted for. It is shown that these conditions can be met using hybrid quantum mechanics/molecular mechanics (QM/MM) together with a high-level exchange-correlation functional and a large basis set. The success of our QM/MM approach is illustrated for reactions of light alkanes in H-MFI, as well as other protonated zeolites, and in Ga/H-MFI. We show that for low temperatures (<400 K), the QM/MM approach gives good predictions of molecular adsorption enthalpies and activation enthalpies for elementary reactions. This is also true for higher temperatures (>400 K) if the effects of configuration are considered using a correction obtained from configurationally biased Monte Carlo (CBMC) calculations. Calculations of the molecular adsorption entropy and the activation entropy for elementary reactions are more difficult to predict accurately. Application of the quasi-rigid rotor harmonic approximation overpredicts the loss of entropy of adsorption from the gas phase, particularly for zeolites containing large cavities and channels. CBMC corrections capture this deviation well for molecular adsorption and for early transition states resembling the adsorbed state but are inadequate for late transition states involving two loosely associated fragments.
科研通智能强力驱动
Strongly Powered by AbleSci AI