Risk Signature of Cancer-Associated Fibroblast–Secreted Cytokines Associates With Clinical Outcomes of Breast Cancer

医学 内科学 肿瘤科 癌症 癌相关成纤维细胞 基因签名 生物标志物
作者
Chunxiao Sun,Siwei Wang,Yuchen Zhang,Fan Yang,Tianyu Zeng,Fanchen Meng,Mengzhu Yang,Yiqi Yang,Yijia Hua,Ziyi Fu,Jun Li,Xiang Huang,Hao Wu,Yongmei Yin,Wei Li
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11: 628677- 被引量:1
标识
DOI:10.3389/fonc.2021.628677
摘要

Cancer-associated fibroblasts (CAFs) are key components in tumor microenvironment (TME). The secreted products of CAFs play important roles in regulating tumor cells and further impacting clinical prognosis. This study aims to reveal the relationship between CAF-secreted cytokines and breast cancer (BC) by constructing the risk signature. We performed three algorithms to reveal CAF-related cytokines in the TCGA BC dataset and identified five prognosis-related cytokines. Then we used single-cell RNA sequencing (ScRNA-Seq) datasets of BC to confirm the expression level of these five cytokines in CAFs. METABRIC and other independent datasets were utilized to validate the findings in further analyses. Based on the identified five-cytokine signature derived from CAFs, BC patients with high-risk score (RS) had shorter overall survival than low-RS cases. Further analysis suggested that the high-RS level correlated with cell proliferation and mast cell infiltration in BCs of the Basal-like subtype. The results also indicated that the level of RS could discriminate the high-risk BC cases harboring driver mutations (i.e., PI3KCA, CDH1, and TP53). Additionally, the status of five-cytokine signature was associated with the frequency and molecular timing of whole genome duplication (WGD) events. Intratumor heterogeneity (ITH) analysis among BC samples indicated that the high-RS level was associated with the increase of tumor subclones. This work demonstrated that the prognostic signature based on CAF-secreted cytokines was associated with clinical outcome, tumor progression, and genetic alteration. Our findings may provide insights to develop novel strategies for early intervention and prognostic prediction of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kongbaige发布了新的文献求助10
刚刚
无花果应助Panmm采纳,获得10
1秒前
Hello应助sugar采纳,获得10
1秒前
1秒前
宋xf完成签到,获得积分10
3秒前
narall完成签到,获得积分10
3秒前
希希子完成签到,获得积分10
3秒前
3秒前
天真的莺发布了新的文献求助20
3秒前
丘比特应助没有昵称采纳,获得10
3秒前
4秒前
不配.应助小余采纳,获得10
4秒前
阡陌花开完成签到 ,获得积分10
4秒前
爆米花应助可乐全糖微冰采纳,获得10
4秒前
生动天川完成签到 ,获得积分10
4秒前
张秋实完成签到,获得积分10
5秒前
小白发布了新的文献求助10
5秒前
黑衣人的秘密完成签到,获得积分20
6秒前
6秒前
文静的化蛹关注了科研通微信公众号
6秒前
orixero应助klmkalf采纳,获得10
7秒前
梁京发布了新的文献求助10
7秒前
aleilei完成签到 ,获得积分10
7秒前
Yan发布了新的文献求助10
7秒前
Lucas应助半缘君采纳,获得10
8秒前
ScholarZmm完成签到,获得积分10
8秒前
8秒前
希希子发布了新的文献求助10
9秒前
西奥发布了新的文献求助10
9秒前
9秒前
FashionBoy应助初之采纳,获得10
9秒前
黎明的第一道曙光完成签到 ,获得积分10
9秒前
研友_LpvQlZ完成签到,获得积分10
10秒前
10秒前
简单秋烟发布了新的文献求助10
10秒前
在水一方应助紫心采纳,获得10
10秒前
cst发布了新的文献求助10
11秒前
兔雳完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
2024 Medicinal Chemistry Reviews 400
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Dictionary of socialism 350
AI-Driven Alzheimer's Disease Detection and Prediction 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3193321
求助须知:如何正确求助?哪些是违规求助? 2842281
关于积分的说明 8038597
捐赠科研通 2506279
什么是DOI,文献DOI怎么找? 1339013
科研通“疑难数据库(出版商)”最低求助积分说明 638583
邀请新用户注册赠送积分活动 607154