Risk Signature of Cancer-Associated Fibroblast–Secreted Cytokines Associates With Clinical Outcomes of Breast Cancer

医学 内科学 肿瘤科 癌症 癌相关成纤维细胞 基因签名 生物标志物
作者
Chunxiao Sun,Siwei Wang,Yuchen Zhang,Fan Yang,Tianyu Zeng,Fanchen Meng,Mengzhu Yang,Yiqi Yang,Yijia Hua,Ziyi Fu,Jun Li,Xiang Huang,Hao Wu,Yongmei Yin,Wei Li
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11: 628677- 被引量:1
标识
DOI:10.3389/fonc.2021.628677
摘要

Cancer-associated fibroblasts (CAFs) are key components in tumor microenvironment (TME). The secreted products of CAFs play important roles in regulating tumor cells and further impacting clinical prognosis. This study aims to reveal the relationship between CAF-secreted cytokines and breast cancer (BC) by constructing the risk signature. We performed three algorithms to reveal CAF-related cytokines in the TCGA BC dataset and identified five prognosis-related cytokines. Then we used single-cell RNA sequencing (ScRNA-Seq) datasets of BC to confirm the expression level of these five cytokines in CAFs. METABRIC and other independent datasets were utilized to validate the findings in further analyses. Based on the identified five-cytokine signature derived from CAFs, BC patients with high-risk score (RS) had shorter overall survival than low-RS cases. Further analysis suggested that the high-RS level correlated with cell proliferation and mast cell infiltration in BCs of the Basal-like subtype. The results also indicated that the level of RS could discriminate the high-risk BC cases harboring driver mutations (i.e., PI3KCA, CDH1, and TP53). Additionally, the status of five-cytokine signature was associated with the frequency and molecular timing of whole genome duplication (WGD) events. Intratumor heterogeneity (ITH) analysis among BC samples indicated that the high-RS level was associated with the increase of tumor subclones. This work demonstrated that the prognostic signature based on CAF-secreted cytokines was associated with clinical outcome, tumor progression, and genetic alteration. Our findings may provide insights to develop novel strategies for early intervention and prognostic prediction of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkuang发布了新的文献求助10
1秒前
15256397832发布了新的文献求助30
2秒前
慢歌完成签到 ,获得积分10
3秒前
花花花花发布了新的文献求助10
4秒前
田様应助李学文啊采纳,获得10
5秒前
5秒前
孙帅完成签到,获得积分10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得20
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
酷波er应助黄大师采纳,获得10
8秒前
斩封完成签到,获得积分10
12秒前
七月发布了新的文献求助10
12秒前
13秒前
geold完成签到,获得积分10
15秒前
16秒前
AXIANGGE发布了新的文献求助10
16秒前
17秒前
17秒前
在下天池宫人间行走完成签到,获得积分10
20秒前
Nora发布了新的文献求助30
20秒前
黄大师发布了新的文献求助10
21秒前
吴未发布了新的文献求助10
22秒前
七月完成签到,获得积分10
23秒前
慕青应助一路生花采纳,获得10
24秒前
大个应助逗逗豆芽采纳,获得10
30秒前
看看关注了科研通微信公众号
32秒前
33秒前
36秒前
丘比特应助结实青文采纳,获得10
36秒前
AXIANGGE完成签到,获得积分10
38秒前
39秒前
七月完成签到,获得积分10
39秒前
杜天豪发布了新的文献求助10
41秒前
逗逗豆芽发布了新的文献求助10
41秒前
Nora完成签到,获得积分10
41秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3185651
求助须知:如何正确求助?哪些是违规求助? 2835974
关于积分的说明 8007155
捐赠科研通 2498492
什么是DOI,文献DOI怎么找? 1333477
科研通“疑难数据库(出版商)”最低求助积分说明 636868
邀请新用户注册赠送积分活动 604607