Risk Signature of Cancer-Associated Fibroblast–Secreted Cytokines Associates With Clinical Outcomes of Breast Cancer

医学 内科学 肿瘤科 癌症 癌相关成纤维细胞 基因签名 生物标志物
作者
Chunxiao Sun,Siwei Wang,Yuchen Zhang,Fan Yang,Tianyu Zeng,Fanchen Meng,Mengzhu Yang,Yiqi Yang,Yijia Hua,Ziyi Fu,Jun Li,Xiang Huang,Hao Wu,Yongmei Yin,Wei Li
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11: 628677- 被引量:1
标识
DOI:10.3389/fonc.2021.628677
摘要

Cancer-associated fibroblasts (CAFs) are key components in tumor microenvironment (TME). The secreted products of CAFs play important roles in regulating tumor cells and further impacting clinical prognosis. This study aims to reveal the relationship between CAF-secreted cytokines and breast cancer (BC) by constructing the risk signature. We performed three algorithms to reveal CAF-related cytokines in the TCGA BC dataset and identified five prognosis-related cytokines. Then we used single-cell RNA sequencing (ScRNA-Seq) datasets of BC to confirm the expression level of these five cytokines in CAFs. METABRIC and other independent datasets were utilized to validate the findings in further analyses. Based on the identified five-cytokine signature derived from CAFs, BC patients with high-risk score (RS) had shorter overall survival than low-RS cases. Further analysis suggested that the high-RS level correlated with cell proliferation and mast cell infiltration in BCs of the Basal-like subtype. The results also indicated that the level of RS could discriminate the high-risk BC cases harboring driver mutations (i.e., PI3KCA, CDH1, and TP53). Additionally, the status of five-cytokine signature was associated with the frequency and molecular timing of whole genome duplication (WGD) events. Intratumor heterogeneity (ITH) analysis among BC samples indicated that the high-RS level was associated with the increase of tumor subclones. This work demonstrated that the prognostic signature based on CAF-secreted cytokines was associated with clinical outcome, tumor progression, and genetic alteration. Our findings may provide insights to develop novel strategies for early intervention and prognostic prediction of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木林森江完成签到 ,获得积分10
刚刚
劲秉应助Aggie采纳,获得30
3秒前
3秒前
Young完成签到,获得积分10
4秒前
6秒前
思源应助高璐采纳,获得10
6秒前
7秒前
wanci应助心灵美水蜜桃采纳,获得10
11秒前
陈cxz发布了新的文献求助10
12秒前
13秒前
嗯呢嗯呢完成签到,获得积分20
14秒前
15秒前
诗筠完成签到 ,获得积分10
16秒前
劲秉应助青梅采纳,获得10
21秒前
机智的Kiki发布了新的文献求助10
22秒前
嗯呢嗯呢发布了新的文献求助10
23秒前
23秒前
丘比特应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
加菲丰丰应助科研通管家采纳,获得20
24秒前
24秒前
24秒前
牛肉汉堡发布了新的文献求助10
25秒前
Owen应助二宝采纳,获得10
27秒前
传奇3应助欣喜面包采纳,获得10
28秒前
CodeCraft应助FionaZhong采纳,获得10
29秒前
mm发布了新的文献求助30
29秒前
30秒前
萱萱发布了新的文献求助10
30秒前
萱萱发布了新的文献求助10
31秒前
萱萱发布了新的文献求助10
31秒前
莹ing完成签到 ,获得积分10
31秒前
31秒前
萱萱发布了新的文献求助10
33秒前
萱萱发布了新的文献求助10
33秒前
33秒前
萱萱发布了新的文献求助10
33秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
ALA生合成不全マウスでの糖代謝異常の分子機構解析 520
安全防范技术与工程 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
2024 Medicinal Chemistry Reviews 400
Why I Chose China [by Morris R. Wills] in "Look", February 8 and 22, 1966; 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3191484
求助须知:如何正确求助?哪些是违规求助? 2840808
关于积分的说明 8030160
捐赠科研通 2504179
什么是DOI,文献DOI怎么找? 1337511
科研通“疑难数据库(出版商)”最低求助积分说明 638102
邀请新用户注册赠送积分活动 606605