亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Value of artificial intelligence model based on unenhanced computed tomography of urinary tract for preoperative prediction of calcium oxalate monohydrate stones in vivo

医学 草酸钙 放射科 泌尿系统 人工智能 核医学 内科学 计算机科学
作者
Lei Tang,Wuchao Li,Xian‐Chun Zeng,Rongpin Wang,Xiaojie Yang,Guangheng Luo,Qijian Chen,Lihui Wei,Bin Song
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:9 (14): 1129-1129 被引量:10
标识
DOI:10.21037/atm-21-965
摘要

Urolithiasis is a global disease with a high incidence and recurrence rate, and stone composition is closely related to the choice of treatment and preventive measures. Calcium oxalate monohydrate (COM) is the most common in clinical practice, which is hard and difficult to fragment. Preoperative identification of its components and selection of effective surgical methods can reduce the risk of patients having a second operation. Methods that can be used for stone composition analysis include infrared spectroscopy, X-ray diffraction, and polarized light microscopy, but they are all performed on stone specimens in vitro after surgery. This study aimed to design and develop an artificial intelligence (AI) model based on unenhanced computed tomography (CT) images of the urinary tract, and to investigate the predictive ability of the model for COM stones in vivo preoperatively, so as to provide surgeons with more accurate diagnostic information.Preoperative unenhanced CT images of patients with urinary calculi whose components were determined by infrared spectroscopy in a single center were retrospectively analyzed, including 337 cases of COM stones and 170 of non-COM stones. All images were manually segmented and the image features were extracted, and randomly divided into the training and testing sets in a ratio of 7:3. The least absolute shrinkage and selection operation algorithm (LASSO) was used to construct the AI model, and classification of the training and testing sets was carried out.A total of 1,218 radiomics imaging features were extracted, and 8 features with non-zero coefficients were finally obtained. The sensitivity, specificity and accuracy of the AI model were 90.5%, 84.3% and 88.5% for the training set, and 90.1%, 84.3% and 88.3% for the testing set. The area under the curve was 0.935 for the training set and 0.933 for the testing set.The AI model based on unenhanced CT images of the urinary tract can predict COM and non-COM stones in vivo preoperatively, and the model has high sensitivity, specificity and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miku1完成签到,获得积分10
2秒前
8秒前
不远完成签到,获得积分10
11秒前
miku1发布了新的文献求助10
13秒前
闵凝竹完成签到 ,获得积分10
29秒前
54秒前
明亮梦山完成签到 ,获得积分10
1分钟前
1分钟前
小凉完成签到 ,获得积分10
1分钟前
吴WU发布了新的文献求助10
1分钟前
烟消云散完成签到,获得积分10
1分钟前
1分钟前
黑色兔子完成签到,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
2分钟前
2分钟前
沿途有你完成签到 ,获得积分10
2分钟前
思源应助爱听歌笑寒采纳,获得30
2分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
赫连依秋完成签到,获得积分10
4分钟前
5分钟前
Nick爱学习完成签到,获得积分10
5分钟前
Nick爱学习发布了新的文献求助20
5分钟前
5分钟前
30发布了新的文献求助10
5分钟前
科研通AI2S应助Nick爱学习采纳,获得10
5分钟前
wyh295352318完成签到 ,获得积分10
5分钟前
黑色兔子关注了科研通微信公众号
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
黑色兔子发布了新的文献求助10
6分钟前
和谐蛋蛋完成签到,获得积分10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
liuzhigang完成签到 ,获得积分10
8分钟前
JavedAli完成签到,获得积分10
8分钟前
JamesPei应助爱听歌笑寒采纳,获得10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003702
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691454