Prediction of Difficult Tracheal Intubation by Artificial Intelligence: A Prospective Observational Study

插管 观察研究 预测值 择期手术 医学 前瞻性队列研究 人工智能 计算机科学 外科 内科学
作者
Fatma ÇELİK,Emrah Aydemir
出处
期刊:Duzce Universitesi Tip Fakültesi Dergisi [Duzce Medical Journal]
卷期号:23 (1): 47-54 被引量:1
标识
DOI:10.18678/dtfd.862467
摘要

Aim: Many predictive clinical tests are used together for preoperative detection of patients with difficult airway risk. In this study, we aimed to predict difficult intubation with different artificial intelligence algorithms using various clinical tests and anthropometric measurements, besides, to evaluate the accuracy performance of Cormack and Lehane (C-L) classification with artificial intelligence. Material and Methods: This study was conducted as a single-blind prospective observational study between 2016 and 2019. A total of 1486 patients with American Society of Anesthesiologists physical status I-III, scheduled to undergo elective surgery and requiring endotracheal intubation, were included. Demographic variables, clinical tests and anthropometric measurements of the patients were recorded. Difficult intubation was evaluated using the 4-grade C-L system according to the easy and difficult intubation criteria. Difficult intubation was tried to predict using 16 different artificial intelligence algorithms. Results: The highest success rate among artificial intelligence algorithms was obtained by the RandomForest method. With this method, difficult intubation was predicted with 92.85% sensitivity, 96.94% specificity, 93.69% positive predictive value and 96.52% negative predictive value. C-L classification accuracy performance also determined as 95.60%. Conclusion: Artificial intelligence has been considerably successful in predicting difficult intubation. Besides, C-L classifications of easy and difficult intubated patients were successfully predicted with artificial intelligence algorithms. Using a 6-grade modified C-L classification for laryngeal view may provide stronger difficult intubation prediction. A safer and more potent prediction in training artificial intelligence can be achieved by adding individual differences and clinical features that support the definition of difficult intubation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiger完成签到,获得积分10
1秒前
MLJ完成签到 ,获得积分10
1秒前
挡住所有坏运气888完成签到,获得积分10
1秒前
blutte发布了新的文献求助10
2秒前
4秒前
走之完成签到,获得积分10
5秒前
6秒前
晓倩发布了新的文献求助10
9秒前
genomed应助科研通管家采纳,获得10
10秒前
10秒前
genomed应助科研通管家采纳,获得10
10秒前
qq应助科研通管家采纳,获得20
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
罗_应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
四季豆完成签到 ,获得积分10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
Siliconeoil完成签到,获得积分10
12秒前
无花果应助MOMO采纳,获得10
13秒前
13秒前
还单身的若蕊完成签到,获得积分10
13秒前
的微博发布了新的文献求助10
15秒前
付创完成签到,获得积分10
17秒前
平凡的七月完成签到,获得积分10
19秒前
21秒前
23秒前
野原完成签到,获得积分20
25秒前
Daisy发布了新的文献求助10
25秒前
饱满的小霜完成签到,获得积分20
25秒前
cxm完成签到,获得积分10
26秒前
iY完成签到 ,获得积分10
26秒前
随便完成签到,获得积分20
27秒前
晓倩完成签到,获得积分10
27秒前
曳平帆发布了新的文献求助10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242601
求助须知:如何正确求助?哪些是违规求助? 2886899
关于积分的说明 8245228
捐赠科研通 2555424
什么是DOI,文献DOI怎么找? 1383482
科研通“疑难数据库(出版商)”最低求助积分说明 649722
邀请新用户注册赠送积分活动 625605