Finding lncRNA-Protein Interactions Based on Deep Learning With Dual-Net Neural Architecture

人工智能 计算机科学 深度学习 人工神经网络 特征(语言学) 排名(信息检索) 鉴定(生物学) 机器学习 模式识别(心理学) 生物 语言学 植物 哲学
作者
Lihong Peng,Chang Wang,Xiongfei Tian,Liqian Zhou,Keqin Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3456-3468 被引量:41
标识
DOI:10.1109/tcbb.2021.3116232
摘要

The identification of lncRNA-protein interactions (LPIs) is important to understand the biological functions and molecular mechanisms of lncRNAs. However, most computational models are evaluated on a unique dataset, thereby resulting in prediction bias. Furthermore, previous models have not uncovered potential proteins (or lncRNAs) interacting with a new lncRNA (or protein). Finally, the performance of these models can be improved. In this study, we develop a Deep Learning framework with Dual-net Neural architecture to find potential LPIs (LPI-DLDN). First, five LPI datasets are collected. Second, the features of lncRNAs and proteins are extracted by Pyfeat and BioTriangle, respectively. Third, these features are concatenated as a vector after dimension reduction. Finally, a deep learning model with dual-net neural architecture is designed to classify lncRNA-protein pairs. LPI-DLDN is compared with six state-of-the-art LPI prediction methods (LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI) under four cross validations. The results demonstrate the powerful LPI classification performance of LPI-DLDN. Case study analyses show that there may be interactions between RP11-439E19.10 and Q15717, and between RP11-196G18.22 and Q9NUL5. The novelty of LPI-DLDN remains, integrating various biological features, designing a novel deep learning-based LPI identification framework, and selecting the optimal LPI feature subset based on feature importance ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
1秒前
Sun关注了科研通微信公众号
1秒前
DT发布了新的文献求助10
1秒前
1秒前
和谐的孱发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
懒懒大王发布了新的文献求助10
3秒前
11发布了新的文献求助10
3秒前
善学以致用应助loong采纳,获得10
3秒前
李健的小迷弟应助HXT采纳,获得10
4秒前
CipherSage应助个性楷瑞采纳,获得10
4秒前
深情安青应助Siriya采纳,获得10
5秒前
5秒前
5秒前
Evelyn发布了新的文献求助10
5秒前
hl完成签到,获得积分10
6秒前
拖拉机完成签到,获得积分10
6秒前
明朗发布了新的文献求助10
7秒前
哈哈完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
大个应助负责冰烟采纳,获得10
8秒前
和谐的孱完成签到,获得积分10
8秒前
星辰大海应助申左一采纳,获得10
9秒前
随风而动123完成签到,获得积分10
9秒前
ldkl应助拖拉机采纳,获得30
9秒前
科研通AI5应助zy采纳,获得10
10秒前
yuehui完成签到,获得积分10
10秒前
紧张的冷卉完成签到,获得积分10
10秒前
勤劳樱发布了新的文献求助10
10秒前
晨芒完成签到,获得积分10
11秒前
11秒前
思源应助tthh采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371