Finding lncRNA-Protein Interactions Based on Deep Learning With Dual-Net Neural Architecture

人工智能 计算机科学 深度学习 人工神经网络 特征(语言学) 排名(信息检索) 鉴定(生物学) 机器学习 模式识别(心理学) 生物 语言学 植物 哲学
作者
Lihong Peng,Chang Wang,Xiongfei Tian,Liqian Zhou,Keqin Li
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (6): 3456-3468 被引量:41
标识
DOI:10.1109/tcbb.2021.3116232
摘要

The identification of lncRNA-protein interactions (LPIs) is important to understand the biological functions and molecular mechanisms of lncRNAs. However, most computational models are evaluated on a unique dataset, thereby resulting in prediction bias. Furthermore, previous models have not uncovered potential proteins (or lncRNAs) interacting with a new lncRNA (or protein). Finally, the performance of these models can be improved. In this study, we develop a Deep Learning framework with Dual-net Neural architecture to find potential LPIs (LPI-DLDN). First, five LPI datasets are collected. Second, the features of lncRNAs and proteins are extracted by Pyfeat and BioTriangle, respectively. Third, these features are concatenated as a vector after dimension reduction. Finally, a deep learning model with dual-net neural architecture is designed to classify lncRNA-protein pairs. LPI-DLDN is compared with six state-of-the-art LPI prediction methods (LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI) under four cross validations. The results demonstrate the powerful LPI classification performance of LPI-DLDN. Case study analyses show that there may be interactions between RP11-439E19.10 and Q15717, and between RP11-196G18.22 and Q9NUL5. The novelty of LPI-DLDN remains, integrating various biological features, designing a novel deep learning-based LPI identification framework, and selecting the optimal LPI feature subset based on feature importance ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卓Celina完成签到,获得积分10
1秒前
千俞完成签到 ,获得积分10
1秒前
于是完成签到,获得积分10
1秒前
飞云发布了新的文献求助10
1秒前
2秒前
zdw完成签到,获得积分10
3秒前
炙热含羞草完成签到,获得积分10
4秒前
4秒前
4秒前
徐徐诱之发布了新的文献求助10
4秒前
大海完成签到,获得积分10
7秒前
勤奋柚子完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
英姑应助在在在在在在1采纳,获得10
10秒前
10秒前
夏先生完成签到 ,获得积分10
10秒前
12秒前
13秒前
HSA发布了新的文献求助10
13秒前
FashionBoy应助美好斓采纳,获得100
14秒前
fox199753206发布了新的文献求助10
14秒前
明理的曼凡应助徐徐诱之采纳,获得10
14秒前
生动路人应助徐徐诱之采纳,获得30
14秒前
螳螂腿子发布了新的文献求助10
14秒前
15秒前
15秒前
充电宝应助陶醉海燕采纳,获得10
17秒前
华仔应助周萌采纳,获得10
17秒前
细心书包完成签到,获得积分10
18秒前
葛稀发布了新的文献求助10
18秒前
19秒前
张青争完成签到,获得积分10
20秒前
20秒前
xiaojin完成签到,获得积分10
21秒前
21秒前
冷傲迎梦完成签到,获得积分20
21秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982