光热治疗
PEG比率
聚乙二醇
光热效应
生物物理学
材料科学
化学
组合化学
纳米技术
生物化学
生物
财务
经济
作者
Sa Wang,Tingting Hu,Guanyun Wang,Zhengdi Wang,Dan Yan,Ruizheng Liang,Chaoliang Tan
标识
DOI:10.1016/j.cej.2021.129458
摘要
Ultrathin two-dimensional (2D) nanosheets (NSs) have been widely explored as nanoagents for multimodal cancer therapies, such as photothermal therapy (PTT) combined with chemodynamic therapy (CDT). However, it is still a challenge to prepare 2D NSs with good performance in both CDT and NIR-II PTT. Here, we report the preparation of ultrathin 2D CuFe2S3 NSs as an efficient nanoagent for synergistic CDT and NIR-II PTT to ablate cancer cells/tumors. Ultrathin 2D CuFe2S3 NSs are first prepared by sulfurization of ultrathin CuFe-LDH NSs via a simple hydrothermal treatment. After modification with polyethylene glycol (PEG), the PEG-modified CuFe2S3 NSs (CuFe2S3-PEG) show broadband NIR-II absorption and excellent photothermal conversion efficiency (~55.86%) at 1064 nm. Moreover, the overproduced glutathione in the tumor microenvironment can react with CuFe2S3-PEG NSs to release Fe2+ and Cu+, thus activating Fenton reaction to efficiently produce hydroxyl radicals (·OH). Importantly, the photothermal effect of CuFe2S3-PEG could further synergistically improve the Fenton reaction by increasing the local temperature. In vitro and in vivo results reveal that the CuFe2S3-PEG has remarkable synergistic CDT/PTT antitumor activity. This study has proven that the metal chalcogenide NSs of CuFe2S3-PEG can be used as an efficient nanoagent for multimodal cancer therapies, which could also be promising in other applications like biosensors, drug delivery and antibacterial.
科研通智能强力驱动
Strongly Powered by AbleSci AI