成像体模
核医学
阈值
双重能量
体素
霍恩斯菲尔德秤
生物医学工程
分解
计算机断层摄影术
材料科学
数学
医学
化学
计算机科学
放射科
人工智能
病理
骨矿物
有机化学
图像(数学)
骨质疏松症
作者
J. S. Tse,Douglas A Kondro,Michael T. Kuczynski,Yves Pauchard,Andrea Veljkovic,David W. Holdsworth,Viviane Frasson,Sarah L. Manske,Paul MacMullan,Peter Salat
标识
DOI:10.1097/rli.0000000000000879
摘要
Objectives The aim of this study was to assess the accuracy and precision of a novel application of 3-material decomposition (3MD) with virtual monochromatic images (VMIs) in the dual-energy computed tomography (DECT) assessment of monosodium urate (MSU) and hydroxyapatite (HA) phantoms compared with a commercial 2-material decomposition (2MD) and dual-thresholding (DT) material decomposition methods. Materials and Methods Monosodium urate (0.0, 3.4, 13.3, 28.3, and 65.2 mg/dL tubes) and HA (100, 400, and 800 mg/cm3 tubes) phantoms were DECT scanned individually and together in the presence of the foot and ankle of 15 subjects. The raw data were decomposed with 3MD-VMI, 2MD, and DT to produce MSU-only and HA-only images. Mean values of 10 × 10 × 10–voxel volumes of interest (244 μm3) placed in each MSU and HA phantom well were obtained and compared with their known concentrations and across measurements with subjects' extremities to obtain accuracy and precision measures. A statistical difference was considered significant if P < 0.05. Results Compared with known phantom standards, 3MD-VMI was accurate for the detection of MSU concentrations as low as 3.4 mg/dL (P = 0.75). In comparison, 2MD was limited to 13.3 mg/dL (P = 0.06) and DT was unable to detect MSU concentrations below 65.2 mg/L (P = 0.16). For the HA phantom, 3MD-VMI and 2MD were accurate for all concentrations including the lowest at 100 mg/cm3 (P = 0.63 and P = 0.55, respectively). Dual-thresholding was not useful for the decomposition of HA phantom. Precision was high for both 3MD-VMI and 2MD measurements for both MSU and HA phantoms. Qualitatively, 3MD-VMI MSU-only images demonstrated reduced beam-hardening artifact and voxel misclassification, compared with 2MD and DT. Conclusions Three-material decomposition-VMI DECT is accurate for quantification of MSU and HA concentrations in phantoms and accurately detects a lower concentration of MSU than either 2MD or DT. For concentration measurements of both MSU and HA phantoms, 3MD-VMI and 2MD have high precision, but DT had limitations. Clinical implementation of 3MD-VMI DECT promises to improve the performance of this imaging modality for diagnosis and treatment monitoring of gout.
科研通智能强力驱动
Strongly Powered by AbleSci AI