Wheat Yellow Rust Severity Detection by Efficient DF-UNet and UAV Multispectral Imagery

Rust(编程语言) 多光谱图像 计算机科学 修剪 精准农业 人工智能 深度学习 领域(数学) 比例(比率) 分割 模式识别(心理学) 遥感 农业 数学 地图学 农学 地理 生物 考古 程序设计语言 纯数学
作者
Tianxiang Zhang,Zhifang Yang,Zhiyong Xu,Jiangyun Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (9): 9057-9068 被引量:27
标识
DOI:10.1109/jsen.2022.3156097
摘要

Crop disease seriously affects production because of its highly destructive property. Wheat under different levels of disease infection should be treated by various chemical strategies to enable a precision plant protection. Therefore, a fast and robust algorithm for wheat yellow rust disease severity determination is highly desirable for its sustainable management. The recent use of remote sensing and deep learning is drawing increasing research interests in wheat yellow rust severity detection at leaf level. However, little reviews take field-scale rust severity detection into account by using UAV multispectral images and deep learning networks. As a result, by the means of UAV multispectral images, a real-time yellow rust detection algorithm named Efficient Dual Flow UNet (DF-UNet) to detect different levels of yellow rust is designed and proposed in this paper to meet practical requirements. First, pruning strategy is utilized to realize a lightweight structure. Second, the Sparse Channel Attention (SCA) Module is designed to increase the receptive field of the network and enhance the ability to distinguish each category. Third, by fusing SCA, a novel dual flow branch model with segmentation and ranking branch based on UNet is proposed to accomplish yellow rust severity determination at field scale. The comparative results show that the proposed method reduces more than half computation load and achieves the highest overall accuracy score among other state-of-the-art deep learning models. It is convinced that the proposed DF-UNet can pave the way for automated yellow rust severity detection at farmland scales in a robust way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘惜萱发布了新的文献求助10
刚刚
SciGPT应助余晖霞光采纳,获得10
1秒前
彭于晏应助琪琪采纳,获得10
2秒前
3秒前
5秒前
共享精神应助尊敬兔子采纳,获得10
6秒前
6秒前
桐桐应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
coolkid应助科研通管家采纳,获得10
8秒前
coolkid应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
wy.he应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
dddyl应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
Emma完成签到,获得积分10
9秒前
Camellia完成签到,获得积分10
10秒前
天天开心完成签到 ,获得积分10
11秒前
颜源智发布了新的文献求助10
13秒前
所所应助QING采纳,获得10
20秒前
赘婿应助颜源智采纳,获得10
22秒前
淡定语柔发布了新的文献求助10
24秒前
ASHhan111完成签到,获得积分10
28秒前
123456完成签到,获得积分10
29秒前
感动的雁易完成签到 ,获得积分10
30秒前
30秒前
32秒前
33秒前
思源应助魔幻老黑采纳,获得10
33秒前
SGOM完成签到,获得积分10
34秒前
zhaosh完成签到,获得积分10
34秒前
36秒前
王不王发布了新的文献求助10
38秒前
Sylvia0528发布了新的文献求助10
42秒前
淡定语柔完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030