已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Wheat Yellow Rust Severity Detection by Efficient DF-UNet and UAV Multispectral Imagery

Rust(编程语言) 多光谱图像 计算机科学 修剪 精准农业 人工智能 深度学习 领域(数学) 比例(比率) 分割 模式识别(心理学) 遥感 农业 数学 地图学 农学 地理 生物 考古 程序设计语言 纯数学
作者
Tianxiang Zhang,Zhifang Yang,Zhiyong Xu,Jiangyun Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (9): 9057-9068 被引量:27
标识
DOI:10.1109/jsen.2022.3156097
摘要

Crop disease seriously affects production because of its highly destructive property. Wheat under different levels of disease infection should be treated by various chemical strategies to enable a precision plant protection. Therefore, a fast and robust algorithm for wheat yellow rust disease severity determination is highly desirable for its sustainable management. The recent use of remote sensing and deep learning is drawing increasing research interests in wheat yellow rust severity detection at leaf level. However, little reviews take field-scale rust severity detection into account by using UAV multispectral images and deep learning networks. As a result, by the means of UAV multispectral images, a real-time yellow rust detection algorithm named Efficient Dual Flow UNet (DF-UNet) to detect different levels of yellow rust is designed and proposed in this paper to meet practical requirements. First, pruning strategy is utilized to realize a lightweight structure. Second, the Sparse Channel Attention (SCA) Module is designed to increase the receptive field of the network and enhance the ability to distinguish each category. Third, by fusing SCA, a novel dual flow branch model with segmentation and ranking branch based on UNet is proposed to accomplish yellow rust severity determination at field scale. The comparative results show that the proposed method reduces more than half computation load and achieves the highest overall accuracy score among other state-of-the-art deep learning models. It is convinced that the proposed DF-UNet can pave the way for automated yellow rust severity detection at farmland scales in a robust way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
SGOM发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
爆米花应助GPTea采纳,获得10
9秒前
Ava应助SGOM采纳,获得10
10秒前
11秒前
luming完成签到 ,获得积分10
12秒前
zeyula应助门前海棠依旧采纳,获得10
14秒前
冰菱发布了新的文献求助10
14秒前
yangyajie发布了新的文献求助20
15秒前
Akim应助浅夏初晴采纳,获得30
15秒前
斯文败类应助kai采纳,获得10
21秒前
shenyihui完成签到,获得积分10
22秒前
22秒前
乐乐应助GPTea采纳,获得10
23秒前
汉堡包应助冰菱采纳,获得10
24秒前
完美世界应助yoongi采纳,获得10
24秒前
25秒前
25秒前
神海发布了新的文献求助10
26秒前
27秒前
李健应助王槿采纳,获得10
28秒前
曾经冰露发布了新的文献求助10
30秒前
光亮秋白发布了新的文献求助10
30秒前
31秒前
32秒前
33秒前
35秒前
曾经冰露完成签到,获得积分10
36秒前
沉静的时光完成签到 ,获得积分10
37秒前
Ty发布了新的文献求助10
38秒前
38秒前
小人物的坚持完成签到 ,获得积分10
38秒前
科研小白一枚完成签到,获得积分10
38秒前
迂鱼语郁完成签到 ,获得积分10
39秒前
40秒前
40秒前
薰衣草发布了新的文献求助20
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339