Alzheimer’s disease classification accuracy is Improved by MRI harmonization based on attention-guided generative adversarial networks

计算机科学 人工智能 模式识别(心理学) 卷积神经网络 深度学习 上下文图像分类 神经影像学 磁共振成像 机器学习 图像(数学) 医学 神经科学 心理学 放射科
作者
Sujata Sinha,Sophia I. Thomopoulos,Pradeep Lam,Alexandra M. Muir,Paul Thompson
出处
期刊:Proceedings of SPIE 被引量:9
标识
DOI:10.1117/12.2606155
摘要

Alzheimer's disease (AD) accounts for 60% of dementia cases worldwide; patients with the disease typically suffer from irreversible memory loss and progressive decline in multiple cognitive domains. With brain imaging techniques such as magnetic resonance imaging (MRI), microscopic brain changes are detectable even before abnormal memory loss is detected clinically. Patterns of brain atrophy can be measured using MRI, which gives us an opportunity to facilitate AD detection using image classification techniques. Even so, MRI scanning protocols and scanners differ across studies. The resulting differences in image contrast and signal to noise make it important to train and test classification models on multiple datasets, and to handle shifts in image characteristics across protocols (also known as domain transfer or domain adaptation). Here, we examined whether adversarial domain adaptation can boost the performance of a Convolutional Neural Network (CNN) model designed to classify AD. To test this, we used an Attention-Guided Generative Adversarial Network (GAN) to harmonize images from three publicly available brain MRI datasets - ADNI, AIBL and OASIS - adjusting for scanner-dependent effects. Our AG-GAN optimized a joint objective function that included attention loss, pixel loss, cycle-consistency loss and adversarial loss; the model was trained bidirectionally in an end-to-end fashion. For AD classification, we adapted the popular 2D AlexNet CNN to handle 3D images. Classification based on harmonized MR images significantly outperformed classification based on the three datasets in non-harmonized form, motivating further work on image harmonization using adversarial techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助稳重的秋天采纳,获得10
1秒前
Tianling完成签到,获得积分0
1秒前
善学以致用应助韦诗涵采纳,获得10
1秒前
2秒前
塔玛希完成签到,获得积分10
3秒前
你倒是发啊完成签到,获得积分10
3秒前
yankai完成签到,获得积分20
4秒前
甜蜜的指甲油完成签到,获得积分10
4秒前
4秒前
寂寞圣贤发布了新的文献求助10
7秒前
小鹿呀完成签到,获得积分10
7秒前
温柔的夜柳完成签到,获得积分10
8秒前
huhuan完成签到,获得积分10
9秒前
HCLonely完成签到,获得积分0
10秒前
舒适数据线关注了科研通微信公众号
10秒前
远方完成签到,获得积分10
10秒前
上杉绘梨衣完成签到,获得积分10
10秒前
yang完成签到 ,获得积分10
11秒前
yier完成签到,获得积分10
11秒前
fissh完成签到,获得积分10
11秒前
傅寒天完成签到,获得积分10
11秒前
lillian完成签到,获得积分10
11秒前
Youdge完成签到,获得积分10
12秒前
guozizi发布了新的文献求助30
12秒前
13秒前
pgh.hh完成签到 ,获得积分10
13秒前
123发布了新的文献求助10
14秒前
小杨发布了新的文献求助10
14秒前
懵懂的海露完成签到,获得积分10
14秒前
早早完成签到,获得积分10
14秒前
授业解惑的哑铃完成签到,获得积分10
16秒前
red发布了新的文献求助10
16秒前
dywen完成签到,获得积分10
16秒前
wangke完成签到,获得积分10
17秒前
林子觽完成签到,获得积分10
17秒前
捞鱼完成签到,获得积分10
18秒前
满意的皮带完成签到,获得积分10
18秒前
愉快书琴完成签到,获得积分10
19秒前
小费发布了新的文献求助30
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259