An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge

克里金 健康状况 计算机科学 电池(电) 估计员 电压 锂离子电池 均方误差 超参数优化 过程(计算)
作者
Huanyang Huang,Jinhao Meng,Yuhong Wang,Lei Cai,Jichang Peng,Ji Wu,Qian Xiao,Tianqi Liu,Remus Teodorescu
出处
期刊:Automotive innovation [Springer Nature]
标识
DOI:10.1007/s42154-022-00175-3
摘要

In the long-term prediction of battery degradation, the data-driven method has great potential with historical data recorded by the battery management system. This paper proposes an enhanced data-driven model for Lithium-ion (Li-ion) battery state of health (SOH) estimation with a superior modeling procedure and optimized features. The Gaussian process regression (GPR) method is adopted to establish the data-driven estimator, which enables Li-ion battery SOH estimation with the uncertainty level. A novel kernel function, with the prior knowledge of Li-ion battery degradation, is then introduced to improve the modeling capability of the GPR. As for the features, a two-stage processing structure is proposed to find a suitable partial charging voltage profile with high efficiency. In the first stage, an optimal partial charging voltage is selected by the grid search; while in the second stage, the principal component analysis is conducted to increase both estimation accuracy and computing efficiency. Advantages of the proposed method are validated on two datasets from different Li-ion batteries: Compared with other methods, the proposed method can achieve the same accuracy level in the Oxford dataset; while in Maryland dataset, the mean absolute error, the root-mean-squared error, and the maximum error are at least improved by 16.36%, 32.43%, and 45.46%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的芝麻完成签到 ,获得积分10
1秒前
2秒前
jzmupyj完成签到,获得积分10
2秒前
酷炫的秋凌完成签到,获得积分10
4秒前
一白完成签到 ,获得积分10
4秒前
Shann发布了新的文献求助10
4秒前
6秒前
mofei发布了新的文献求助10
6秒前
6秒前
寒星苍梧完成签到 ,获得积分10
7秒前
prayme4发布了新的文献求助10
10秒前
Chency完成签到,获得积分10
15秒前
jzmulyl完成签到,获得积分10
17秒前
月神满月完成签到,获得积分10
21秒前
和谐尔阳完成签到 ,获得积分10
21秒前
悲痛宇宙完成签到,获得积分10
25秒前
Xtals应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
爆米花应助科研通管家采纳,获得10
26秒前
云&fudong应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
一一应助科研通管家采纳,获得20
26秒前
Hello应助科研通管家采纳,获得10
26秒前
Xtals应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
Owen应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得30
26秒前
26秒前
汉堡包应助邵翎365采纳,获得10
27秒前
AA完成签到,获得积分10
27秒前
丰富的听云完成签到,获得积分10
28秒前
lkc完成签到,获得积分10
33秒前
yujie完成签到 ,获得积分10
37秒前
萧诗双完成签到,获得积分10
37秒前
Lucas应助CJ采纳,获得10
39秒前
39秒前
云青完成签到,获得积分10
39秒前
摆烂的鲲完成签到,获得积分10
41秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790643
关于积分的说明 7795972
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626300
版权声明 601176