An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge

克里金 健康状况 计算机科学 电池(电) 估计员 电压 锂离子电池 均方误差 超参数优化 过程(计算)
作者
Huanyang Huang,Jinhao Meng,Yuhong Wang,Lei Cai,Jichang Peng,Ji Wu,Qian Xiao,Tianqi Liu,Remus Teodorescu
出处
期刊:Automotive innovation [Springer Nature]
标识
DOI:10.1007/s42154-022-00175-3
摘要

In the long-term prediction of battery degradation, the data-driven method has great potential with historical data recorded by the battery management system. This paper proposes an enhanced data-driven model for Lithium-ion (Li-ion) battery state of health (SOH) estimation with a superior modeling procedure and optimized features. The Gaussian process regression (GPR) method is adopted to establish the data-driven estimator, which enables Li-ion battery SOH estimation with the uncertainty level. A novel kernel function, with the prior knowledge of Li-ion battery degradation, is then introduced to improve the modeling capability of the GPR. As for the features, a two-stage processing structure is proposed to find a suitable partial charging voltage profile with high efficiency. In the first stage, an optimal partial charging voltage is selected by the grid search; while in the second stage, the principal component analysis is conducted to increase both estimation accuracy and computing efficiency. Advantages of the proposed method are validated on two datasets from different Li-ion batteries: Compared with other methods, the proposed method can achieve the same accuracy level in the Oxford dataset; while in Maryland dataset, the mean absolute error, the root-mean-squared error, and the maximum error are at least improved by 16.36%, 32.43%, and 45.46%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可能完成签到,获得积分20
1秒前
草拟大坝完成签到 ,获得积分0
4秒前
4秒前
科研通AI6.1应助鲜于诗霜采纳,获得10
4秒前
牧尔芙发布了新的文献求助10
8秒前
医院的孩子完成签到,获得积分10
13秒前
潇潇雨歇发布了新的文献求助10
13秒前
芯止谭轩完成签到 ,获得积分10
17秒前
认真的冬易完成签到 ,获得积分10
21秒前
psy完成签到,获得积分10
22秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
李爱国应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
ding应助西门语梦采纳,获得10
30秒前
chen完成签到 ,获得积分10
30秒前
鲜于诗霜发布了新的文献求助10
31秒前
赘婿应助hanzhiyuxing采纳,获得20
32秒前
香蕉觅云应助可能采纳,获得10
35秒前
哭泣斑马完成签到 ,获得积分10
37秒前
,。完成签到 ,获得积分10
37秒前
张佳贺完成签到 ,获得积分10
37秒前
chao完成签到 ,获得积分10
39秒前
QAQ发布了新的文献求助10
40秒前
孙靖博应助czx采纳,获得10
51秒前
行走的猫完成签到 ,获得积分10
53秒前
58秒前
西门语梦完成签到,获得积分10
1分钟前
yznfly应助ABCD采纳,获得30
1分钟前
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998