An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge

克里金 健康状况 计算机科学 电池(电) 估计员 电压 锂离子电池 均方误差 超参数优化 过程(计算)
作者
Huanyang Huang,Jinhao Meng,Yuhong Wang,Lei Cai,Jichang Peng,Ji Wu,Qian Xiao,Tianqi Liu,Remus Teodorescu
出处
期刊:Automotive innovation [Springer Nature]
标识
DOI:10.1007/s42154-022-00175-3
摘要

In the long-term prediction of battery degradation, the data-driven method has great potential with historical data recorded by the battery management system. This paper proposes an enhanced data-driven model for Lithium-ion (Li-ion) battery state of health (SOH) estimation with a superior modeling procedure and optimized features. The Gaussian process regression (GPR) method is adopted to establish the data-driven estimator, which enables Li-ion battery SOH estimation with the uncertainty level. A novel kernel function, with the prior knowledge of Li-ion battery degradation, is then introduced to improve the modeling capability of the GPR. As for the features, a two-stage processing structure is proposed to find a suitable partial charging voltage profile with high efficiency. In the first stage, an optimal partial charging voltage is selected by the grid search; while in the second stage, the principal component analysis is conducted to increase both estimation accuracy and computing efficiency. Advantages of the proposed method are validated on two datasets from different Li-ion batteries: Compared with other methods, the proposed method can achieve the same accuracy level in the Oxford dataset; while in Maryland dataset, the mean absolute error, the root-mean-squared error, and the maximum error are at least improved by 16.36%, 32.43%, and 45.46%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
psyche完成签到,获得积分10
1秒前
1秒前
善学以致用应助安笙凉城采纳,获得10
2秒前
4秒前
路冰完成签到,获得积分10
5秒前
Jenny发布了新的文献求助10
5秒前
陈年旧事完成签到,获得积分20
6秒前
张吉完成签到,获得积分20
6秒前
9秒前
Werner完成签到 ,获得积分10
9秒前
9秒前
英姑应助Dr_Chu采纳,获得10
12秒前
14秒前
Hello应助Fngz3采纳,获得10
17秒前
Q W驳回了852应助
19秒前
Owen应助罗咩咩采纳,获得10
25秒前
26秒前
领导范儿应助huyz采纳,获得10
26秒前
赘婿应助王晓宇采纳,获得10
30秒前
好咯嗖嗖嗖完成签到 ,获得积分10
30秒前
周涨杰完成签到 ,获得积分10
30秒前
31秒前
monster完成签到 ,获得积分10
31秒前
无花果应助dawn采纳,获得10
31秒前
34秒前
生动的半山完成签到,获得积分10
34秒前
牧鱼发布了新的文献求助10
34秒前
b大溃发布了新的文献求助10
37秒前
38秒前
罗咩咩发布了新的文献求助10
40秒前
好咯嗖嗖嗖关注了科研通微信公众号
40秒前
远航完成签到,获得积分10
40秒前
冷酷的猎豹完成签到,获得积分20
41秒前
王晓宇发布了新的文献求助10
43秒前
复杂的凝冬完成签到,获得积分10
44秒前
liyuanhua发布了新的文献求助10
46秒前
牧鱼完成签到,获得积分10
46秒前
笑看水墨风光完成签到,获得积分10
47秒前
shisui应助DajeVn采纳,获得30
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343