Depth-Dependent Understanding of Cathode Electrolyte Interphase (CEI) on the Layered Li-Ion Cathodes Operated at Extreme High Temperature

阴极 电解质 X射线光电子能谱 材料科学 化学 X射线吸收光谱法 电化学 吸收光谱法 分析化学(期刊) 化学工程 化学物理 电极 物理化学 物理 工程类 量子力学 色谱法
作者
Sudhan Nagarajan,Conan Weiland,Sooyeon Hwang,Mahalingam Balasubramanian,Leela Mohana Reddy Arava
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (10): 4587-4601 被引量:27
标识
DOI:10.1021/acs.chemmater.2c00435
摘要

The high-temperature operation of Li-ion batteries is highly dependent on the stability of the cathode electrolyte interphase (CEI) formed during lithiation–delithiation reactions. However, knowledge on the nature of the CEI is limited and its stability under extreme temperatures is not well understood. Therefore, herein, we investigate a proof-of-concept study on stabilizing CEI on model LiNi0.33Mn0.33Co0.33O2 (NMC333) at an extreme operation condition of 100 °C using the thermally stable pyrrolidinium-based ionic liquid electrolyte. The electrochemical lithiation–delithiation reactions at 100 °C and the CEI evolution upon different cycling conditions are investigated. Further, the depth-dependent CEI chemistry was investigated using energy-tunable synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). The results reveal that the high-temperature operation accelerated the CEI formation compared to room temperature, and the surface of the interphase layer is rich in boron-based inorganic moieties than the deeper surface. Further, bulk-sensitive X-ray absorption spectroscopy (XAS) was used to investigate the transition-metal redox contributors during high-temperature electrochemical reactions; similar to room temperature, the Ni2+/4+ redox couple is the only charge-compensating redox couple during high-temperature operation. Finally, the physical nature of the conformal CEI on the cathode particles was visualized with high-resolution transmission electron microscopy, which confirms that the significant degradation of cathode particles without conformal CEI is due to the transformation of a layer-to-spinel formation at extreme temperature. In this study, understanding this high-temperature interfacial chemistry of NMC cathodes through advanced spectroscopy and microscopy will shed light on transforming the ambient-temperature Li-ion chemistry into high-temperature applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
识南发布了新的文献求助10
2秒前
娜娜发布了新的文献求助10
3秒前
斯文败类应助张大猛采纳,获得10
3秒前
科研副本完成签到,获得积分10
4秒前
myl完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
7秒前
慕青应助能干的幻丝采纳,获得10
8秒前
打打应助英俊的筝采纳,获得10
8秒前
schuang完成签到,获得积分10
10秒前
打打应助coolplex采纳,获得10
10秒前
Ayla雁翎完成签到 ,获得积分10
10秒前
robi发布了新的文献求助30
11秒前
11秒前
若冰发布了新的文献求助30
11秒前
李爱国应助识南采纳,获得10
12秒前
单薄店员发布了新的文献求助10
14秒前
15秒前
徐墨玄发布了新的文献求助10
15秒前
嘟嘟金子发布了新的文献求助30
17秒前
17秒前
笨笨的鞋子完成签到,获得积分10
19秒前
积极的尔白完成签到 ,获得积分10
19秒前
PDY完成签到,获得积分10
22秒前
识南完成签到,获得积分10
22秒前
义气严青完成签到,获得积分10
23秒前
清酒完成签到,获得积分10
24秒前
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
Singularity应助科研通管家采纳,获得10
26秒前
Singularity应助科研通管家采纳,获得10
26秒前
穆紫应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825