In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li–S batteries

多硫化物 分离器(采油) 电解质 储能 化学工程 聚合 原位聚合 化学 硫黄 材料科学 电极 有机化学 聚合物 物理化学 功率(物理) 物理 量子力学 工程类 热力学
作者
Jinchen Zhao,Gaojie Yan,Xiaojie Zhang,Yi Feng,Nanwen Li,Jingjing Shi,Xiongwei Qu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:442: 136352-136352 被引量:42
标识
DOI:10.1016/j.cej.2022.136352
摘要

Lithium–sulfur batteries have been considered one of the most promising energy storage devices because of their high energy density (2600 W·h·kg−1), low cost, and the environmental friendliness of sulfur. However, the shuttle effect caused by the soluble polysulfide produced by the sulfur cathode in the redox process seriously affects the commercialization of the battery. To solve such problems, we designed and synthesized a lightweight covalent organic framework (COF)–based TpPa–SO3H@PP separator through in situ interfacial polymerization. Benefiting from the lithiophilic –SO3H groups, which are arranged in the nanochannels of the TpPa–SO3H COF, the TpPa–SO3H@PP separator not only suppresses the shuttle of polysulfide but also facilitates Li+ migration. Moreover, the good wettability of the electrolyte to the TpPa–SO3H@PP separator resulted in a lower interfacial resistance and higher ionic conductivity, ensuring a higher energy density. Based on the above advantages, cells with the TpPa–SO3H@PP separator showed an initial specific capacity of 863.97 mAh g−1 at 1C, and a capacity of 645.62 mAh g−1 after 500 cycles, and the average capacity decay rate of each cycle was only 0.05%, indicating superior cycling performance. Significantly, we extended the in situ interfacial polymerization to the preparation of a lithiophilic amorphous porous organic polymer (POP)–based TpPa–COOH@PP separator, which also has good performance, demonstrating the universality and effectiveness of in situ interfacial polymerization. This work opens a new route to prepare lithiophilic COF@PP and POP@PP separators with a lower shuttle effect and higher ion transport via in situ interfacial polymerization for high–performance Li–S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈书包完成签到,获得积分10
刚刚
刚刚
ccc发布了新的文献求助10
刚刚
李健的小迷弟应助张聪采纳,获得10
1秒前
1秒前
彩色糖豆发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
小鸭子应助漠寒采纳,获得10
2秒前
大模型应助xiaojingyang0802采纳,获得10
3秒前
Lynn完成签到,获得积分10
3秒前
3秒前
kai发布了新的文献求助10
4秒前
糖糖完成签到,获得积分10
4秒前
4秒前
brave heart完成签到,获得积分10
4秒前
一川烟叶发布了新的文献求助10
4秒前
4秒前
乐乐应助曹文迪采纳,获得10
4秒前
4秒前
5秒前
在水一方应助zzh采纳,获得10
5秒前
5秒前
5秒前
赘婿应助kyrie采纳,获得10
6秒前
7秒前
Lynn发布了新的文献求助10
7秒前
Solitude_Z发布了新的文献求助10
7秒前
小马甲应助xingstar采纳,获得10
8秒前
英姑应助明理的之云采纳,获得10
8秒前
GOODYUE完成签到,获得积分20
8秒前
heiheihei应助曹文迪采纳,获得10
8秒前
逢考必过发布了新的文献求助10
8秒前
dhjskak完成签到,获得积分10
8秒前
wtdd发布了新的文献求助10
8秒前
=Q发布了新的文献求助10
9秒前
九命猫给九命猫的求助进行了留言
9秒前
9秒前
兴奋面包发布了新的文献求助10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481440
求助须知:如何正确求助?哪些是违规求助? 3071576
关于积分的说明 9122712
捐赠科研通 2763320
什么是DOI,文献DOI怎么找? 1516389
邀请新用户注册赠送积分活动 701550
科研通“疑难数据库(出版商)”最低求助积分说明 700413