亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm

强化学习 计算机科学 人工智能 运动规划 理论(学习稳定性) 移动机器人 任务(项目管理) 机器人 增强学习 路径(计算) 算法 领域(数学) 功能(生物学) 序列(生物学) 机器学习 工程类 数学 遗传学 系统工程 进化生物学 纯数学 生物 程序设计语言
作者
Haitao Meng,Hengrui Zhang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (15) 被引量:13
标识
DOI:10.1142/s0218126622502589
摘要

Path planning is an important part of the research field of mobile robots, and it is the premise for mobile robots to complete complex tasks. This paper proposes a reflective reward design method based on potential energy function, and combines the ideas of multi-agent and multi-task learning to form a new training framework. The reflective reward represents the quality of the agent’s current decision relative to the past historical decision sequence, using the second-order information of the historical reward sequence. The policy or value function update of the master agent is then assisted by the reflective agent. The method proposed in this paper can easily extend the existing deep reinforcement learning algorithm based on value function and policy gradient, and then form a new learning method, so that the agent has the reflective characteristics in human learning after making full use of the reward information. It is good at distinguishing the optimal action in the corresponding state. Experiments in pathfinding scenarios verify the effectiveness of the algorithm in sparse reward scenarios. Compared with other algorithms, the deep reinforcement learning algorithm has higher exploration success rate and stability. Experiments in survival scenarios verify the improvement effect of the reward feature enhancement method based on the auxiliary task learning mechanism on the original algorithm. Simulation experiments confirm the effectiveness of the proposed algorithm for solving the path planning problem of mobile robots in dynamic environments and the superiority of deep reinforcement learning algorithms. The simulation results show that the algorithm can accurately avoid unknown obstacles and reach the target point, and the planned path is the shortest and the energy consumed by the robot is the least. This demonstrates the effectiveness of deep reinforcement learning algorithms for local path planning and real-time decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumuzzz发布了新的文献求助50
2秒前
mumumuzzz完成签到,获得积分10
27秒前
lcwait完成签到,获得积分10
27秒前
Wmmmmm发布了新的文献求助10
42秒前
Wmmmmm完成签到,获得积分10
52秒前
白华苍松发布了新的文献求助20
54秒前
上官若男应助读书的时候采纳,获得30
55秒前
Sunsets完成签到 ,获得积分10
1分钟前
善学以致用应助白华苍松采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研小和尚完成签到,获得积分10
1分钟前
小红发布了新的文献求助10
1分钟前
小红完成签到,获得积分10
1分钟前
丘比特应助读书的时候采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
JamesPei应助蓝色牛马采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
sunialnd应助科研通管家采纳,获得150
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
万能图书馆应助蓝色牛马采纳,获得10
2分钟前
隐形不凡完成签到,获得积分10
2分钟前
2分钟前
李桂芳完成签到,获得积分10
3分钟前
ChenGY完成签到,获得积分10
3分钟前
3分钟前
HANZHANG应助胡鸽采纳,获得10
3分钟前
af完成签到,获得积分10
3分钟前
Ava应助读书的时候采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
科研通AI6.1应助HANZHANG采纳,获得30
4分钟前
Everything完成签到,获得积分10
4分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
上官若男应助读书的时候采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
星辰大海应助读书的时候采纳,获得10
5分钟前
坦率的文龙完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739664
求助须知:如何正确求助?哪些是违规求助? 5388233
关于积分的说明 15339861
捐赠科研通 4882052
什么是DOI,文献DOI怎么找? 2624113
邀请新用户注册赠送积分活动 1572832
关于科研通互助平台的介绍 1529616