亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm

强化学习 计算机科学 人工智能 运动规划 理论(学习稳定性) 移动机器人 任务(项目管理) 机器人 增强学习 路径(计算) 算法 领域(数学) 功能(生物学) 序列(生物学) 机器学习 工程类 数学 遗传学 系统工程 进化生物学 纯数学 生物 程序设计语言
作者
Haitao Meng,Hengrui Zhang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (15) 被引量:13
标识
DOI:10.1142/s0218126622502589
摘要

Path planning is an important part of the research field of mobile robots, and it is the premise for mobile robots to complete complex tasks. This paper proposes a reflective reward design method based on potential energy function, and combines the ideas of multi-agent and multi-task learning to form a new training framework. The reflective reward represents the quality of the agent’s current decision relative to the past historical decision sequence, using the second-order information of the historical reward sequence. The policy or value function update of the master agent is then assisted by the reflective agent. The method proposed in this paper can easily extend the existing deep reinforcement learning algorithm based on value function and policy gradient, and then form a new learning method, so that the agent has the reflective characteristics in human learning after making full use of the reward information. It is good at distinguishing the optimal action in the corresponding state. Experiments in pathfinding scenarios verify the effectiveness of the algorithm in sparse reward scenarios. Compared with other algorithms, the deep reinforcement learning algorithm has higher exploration success rate and stability. Experiments in survival scenarios verify the improvement effect of the reward feature enhancement method based on the auxiliary task learning mechanism on the original algorithm. Simulation experiments confirm the effectiveness of the proposed algorithm for solving the path planning problem of mobile robots in dynamic environments and the superiority of deep reinforcement learning algorithms. The simulation results show that the algorithm can accurately avoid unknown obstacles and reach the target point, and the planned path is the shortest and the energy consumed by the robot is the least. This demonstrates the effectiveness of deep reinforcement learning algorithms for local path planning and real-time decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的俊驰完成签到 ,获得积分10
30秒前
GIA完成签到,获得积分10
34秒前
42秒前
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Hillson完成签到,获得积分10
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
善学以致用应助调皮千兰采纳,获得10
2分钟前
2分钟前
调皮千兰发布了新的文献求助10
2分钟前
BowieHuang应助沉默的倔驴采纳,获得10
3分钟前
BowieHuang应助沉默的倔驴采纳,获得10
3分钟前
Hello应助沉默的倔驴采纳,获得10
3分钟前
科研通AI6应助调皮千兰采纳,获得10
3分钟前
田様应助at采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
江姜酱先生完成签到,获得积分10
4分钟前
4分钟前
冷酷的寒天完成签到,获得积分10
4分钟前
4分钟前
4分钟前
香蕉觅云应助冷酷的寒天采纳,获得10
5分钟前
5分钟前
sunfield2014发布了新的文献求助30
5分钟前
调皮千兰发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
凯旋预言完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561486
求助须知:如何正确求助?哪些是违规求助? 4646588
关于积分的说明 14678693
捐赠科研通 4587873
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520