Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm

强化学习 计算机科学 人工智能 运动规划 理论(学习稳定性) 移动机器人 任务(项目管理) 机器人 增强学习 路径(计算) 算法 领域(数学) 功能(生物学) 序列(生物学) 机器学习 工程类 数学 遗传学 系统工程 进化生物学 纯数学 生物 程序设计语言
作者
Haitao Meng,Hengrui Zhang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (15) 被引量:11
标识
DOI:10.1142/s0218126622502589
摘要

Path planning is an important part of the research field of mobile robots, and it is the premise for mobile robots to complete complex tasks. This paper proposes a reflective reward design method based on potential energy function, and combines the ideas of multi-agent and multi-task learning to form a new training framework. The reflective reward represents the quality of the agent’s current decision relative to the past historical decision sequence, using the second-order information of the historical reward sequence. The policy or value function update of the master agent is then assisted by the reflective agent. The method proposed in this paper can easily extend the existing deep reinforcement learning algorithm based on value function and policy gradient, and then form a new learning method, so that the agent has the reflective characteristics in human learning after making full use of the reward information. It is good at distinguishing the optimal action in the corresponding state. Experiments in pathfinding scenarios verify the effectiveness of the algorithm in sparse reward scenarios. Compared with other algorithms, the deep reinforcement learning algorithm has higher exploration success rate and stability. Experiments in survival scenarios verify the improvement effect of the reward feature enhancement method based on the auxiliary task learning mechanism on the original algorithm. Simulation experiments confirm the effectiveness of the proposed algorithm for solving the path planning problem of mobile robots in dynamic environments and the superiority of deep reinforcement learning algorithms. The simulation results show that the algorithm can accurately avoid unknown obstacles and reach the target point, and the planned path is the shortest and the energy consumed by the robot is the least. This demonstrates the effectiveness of deep reinforcement learning algorithms for local path planning and real-time decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
xueji完成签到,获得积分10
刚刚
传奇3应助why采纳,获得10
1秒前
酷酷的悒完成签到,获得积分10
1秒前
2秒前
小步快跑完成签到,获得积分10
2秒前
wlqc完成签到,获得积分10
3秒前
冷傲的咖啡豆完成签到 ,获得积分10
3秒前
帆帆帆发布了新的文献求助10
4秒前
11发布了新的文献求助10
4秒前
纠纠完成签到,获得积分10
5秒前
5秒前
酷酷的悒发布了新的文献求助10
6秒前
落夜发布了新的文献求助10
6秒前
6秒前
机智向松完成签到,获得积分10
6秒前
7秒前
薰硝壤应助王也采纳,获得10
7秒前
8秒前
8秒前
等等完成签到,获得积分10
9秒前
Cloud应助踏实的寒烟采纳,获得20
10秒前
今天也没什么状态完成签到,获得积分10
10秒前
背完单词好睡觉完成签到 ,获得积分10
11秒前
哎嘿应助研友_8Kedgn采纳,获得10
11秒前
jerry发布了新的文献求助10
11秒前
不爱吃芒果完成签到,获得积分10
11秒前
Olivia完成签到 ,获得积分10
12秒前
yanyimeng发布了新的文献求助10
13秒前
山河与海完成签到,获得积分10
13秒前
13秒前
14秒前
lululu关注了科研通微信公众号
14秒前
渔夫完成签到,获得积分10
16秒前
Akim应助小杰采纳,获得10
17秒前
sdas完成签到,获得积分20
17秒前
夏来发布了新的文献求助10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148815
求助须知:如何正确求助?哪些是违规求助? 2799847
关于积分的说明 7837294
捐赠科研通 2457351
什么是DOI,文献DOI怎么找? 1307824
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663