Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm

强化学习 计算机科学 人工智能 运动规划 理论(学习稳定性) 移动机器人 任务(项目管理) 机器人 增强学习 路径(计算) 算法 领域(数学) 功能(生物学) 序列(生物学) 机器学习 工程类 数学 遗传学 系统工程 进化生物学 纯数学 生物 程序设计语言
作者
Haitao Meng,Hengrui Zhang
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:31 (15) 被引量:13
标识
DOI:10.1142/s0218126622502589
摘要

Path planning is an important part of the research field of mobile robots, and it is the premise for mobile robots to complete complex tasks. This paper proposes a reflective reward design method based on potential energy function, and combines the ideas of multi-agent and multi-task learning to form a new training framework. The reflective reward represents the quality of the agent’s current decision relative to the past historical decision sequence, using the second-order information of the historical reward sequence. The policy or value function update of the master agent is then assisted by the reflective agent. The method proposed in this paper can easily extend the existing deep reinforcement learning algorithm based on value function and policy gradient, and then form a new learning method, so that the agent has the reflective characteristics in human learning after making full use of the reward information. It is good at distinguishing the optimal action in the corresponding state. Experiments in pathfinding scenarios verify the effectiveness of the algorithm in sparse reward scenarios. Compared with other algorithms, the deep reinforcement learning algorithm has higher exploration success rate and stability. Experiments in survival scenarios verify the improvement effect of the reward feature enhancement method based on the auxiliary task learning mechanism on the original algorithm. Simulation experiments confirm the effectiveness of the proposed algorithm for solving the path planning problem of mobile robots in dynamic environments and the superiority of deep reinforcement learning algorithms. The simulation results show that the algorithm can accurately avoid unknown obstacles and reach the target point, and the planned path is the shortest and the energy consumed by the robot is the least. This demonstrates the effectiveness of deep reinforcement learning algorithms for local path planning and real-time decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
百宝发布了新的文献求助10
刚刚
jiangnan发布了新的文献求助10
刚刚
Sev完成签到,获得积分10
刚刚
刚刚
可耐的乘风完成签到,获得积分10
刚刚
FIN应助obito采纳,获得30
1秒前
啾啾发布了新的文献求助10
1秒前
爱学习的向日葵完成签到,获得积分10
2秒前
2秒前
华仔应助泛泛之交采纳,获得10
3秒前
雪123发布了新的文献求助10
3秒前
3秒前
4秒前
charon发布了新的文献求助10
4秒前
凶狠的食铁兽完成签到,获得积分10
4秒前
星辰大海应助花花啊采纳,获得10
4秒前
华仔应助liuyingke采纳,获得10
4秒前
HEIKU应助还不如瞎写采纳,获得10
5秒前
liuliumei发布了新的文献求助30
6秒前
zhouzhou完成签到,获得积分10
6秒前
sure发布了新的文献求助10
6秒前
上官若男应助Hu111采纳,获得10
7秒前
务实的紫伊完成签到,获得积分10
7秒前
春风得意完成签到,获得积分10
7秒前
爱你呃不可能完成签到,获得积分10
7秒前
WSY完成签到,获得积分20
7秒前
666星爷留下了新的社区评论
8秒前
风吹似夏完成签到,获得积分10
8秒前
8秒前
李健应助crr采纳,获得10
8秒前
tao完成签到,获得积分20
9秒前
淡淡的雪完成签到,获得积分10
9秒前
9秒前
9秒前
yitang发布了新的文献求助10
10秒前
涛浪发布了新的文献求助10
10秒前
11秒前
11秒前
乔治韦斯莱完成签到 ,获得积分10
12秒前
Jenny应助圈圈采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672