Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease

医学 算法 终末期肾病 糖尿病 逻辑回归 列线图 2型糖尿病 内科学 肾功能 2型糖尿病 肾脏疾病 接收机工作特性 机器学习 疾病 内分泌学 计算机科学
作者
Yutong Zou,Lijun Zhao,Junlin Zhang,Yi‐Ting Wang,Yucheng Wu,Honghong Ren,Tingli Wang,Rui Zhang,Jiali Wang,Yuancheng Zhao,Chunmei Qin,Huan Xu,Lin Li,Zhonglin Chai,Mark E. Cooper,Nanwei Tong,Fang Liu
出处
期刊:Renal Failure [Informa]
卷期号:44 (1): 562-570 被引量:80
标识
DOI:10.1080/0886022x.2022.2056053
摘要

Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) and is associated with increased morbidity and mortality in patients with diabetes. Identification of risk factors involved in the progression of DKD to ESRD is expected to result in early detection and appropriate intervention and improve prognosis. Therefore, this study aimed to establish a risk prediction model for ESRD resulting from DKD in patients with type 2 diabetes mellitus (T2DM).Between January 2008 and July 2019, a total of 390 Chinese patients with T2DM and DKD confirmed by percutaneous renal biopsy were enrolled and followed up for at least 1 year. Four machine learning algorithms (gradient boosting machine, support vector machine, logistic regression, and random forest (RF)) were used to identify the critical clinical and pathological features and to build a risk prediction model for ESRD.There were 158 renal outcome events (ESRD) (40.51%) during the 3-year median follow up. The RF algorithm showed the best performance at predicting progression to ESRD, showing the highest AUC (0.90) and ACC (82.65%). The RF algorithm identified five major factors: Cystatin-C, serum albumin (sAlb), hemoglobin (Hb), 24-hour urine urinary total protein, and estimated glomerular filtration rate. A nomogram according to the aforementioned five predictive factors was constructed to predict the incidence of ESRD.Machine learning algorithms can efficiently predict the incident ESRD in DKD participants. Compared with the previous models, the importance of sAlb and Hb were highlighted in the current model.HighlightsWhat is already known? Identification of risk factors for the progression of DKD to ESRD is expected to improve the prognosis by early detection and appropriate intervention.What this study has found? Machine learning algorithms were used to construct a risk prediction model of ESRD in patients with T2DM and DKD. The major predictive factors were found to be CysC, sAlb, Hb, eGFR, and UTP.What are the implications of the study? In contrast with the treatment of participants with early-phase T2DM with or without mild kidney damage, major emphasis should be placed on indicators of kidney function, nutrition, anemia, and proteinuria for participants with T2DM and advanced DKD to delay ESRD, rather than age, sex, and control of hypertension and glycemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王康发布了新的文献求助10
1秒前
隐形曼青应助Daniel2010采纳,获得10
1秒前
DY驳回了英姑应助
2秒前
精灵夜雨完成签到,获得积分10
2秒前
宋浩奇发布了新的文献求助10
3秒前
iNk应助欧皇采纳,获得10
3秒前
3秒前
3秒前
Tyler发布了新的文献求助10
5秒前
5秒前
科研通AI6应助sifLiu采纳,获得10
5秒前
5秒前
害羞彩虹完成签到,获得积分20
6秒前
没有名称完成签到,获得积分10
6秒前
6秒前
王康完成签到,获得积分10
7秒前
7秒前
冷傲迎梦发布了新的文献求助10
8秒前
搜集达人应助111版采纳,获得10
10秒前
wanwusheng完成签到,获得积分10
12秒前
WUJIAYU完成签到,获得积分10
13秒前
15秒前
suger完成签到,获得积分10
16秒前
19秒前
蔺蔺发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
Yu完成签到,获得积分20
22秒前
废寝忘食发布了新的文献求助10
23秒前
liliuuuuuuuu发布了新的文献求助10
25秒前
ybheart发布了新的文献求助10
26秒前
孙敬涵完成签到,获得积分10
26秒前
Tengami完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
宽宽完成签到,获得积分10
29秒前
李健应助小付采纳,获得10
30秒前
suger发布了新的文献求助10
30秒前
ahh完成签到 ,获得积分10
31秒前
小虾米完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365