Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease

医学 算法 终末期肾病 糖尿病 逻辑回归 列线图 2型糖尿病 内科学 肾功能 2型糖尿病 肾脏疾病 接收机工作特性 机器学习 疾病 内分泌学 计算机科学
作者
Yutong Zou,Lijun Zhao,Junlin Zhang,Yi-Ting Wang,Yucheng Wu,Honghong Ren,Tingli Wang,Rui Zhang,Jiali Wang,Yuancheng Zhao,Chunmei Qin,Huan Xu,Lin Li,Zhonglin Chai,Mark E. Cooper,Nanwei Tong,Fang Liu
出处
期刊:Renal Failure [Informa]
卷期号:44 (1): 562-570 被引量:34
标识
DOI:10.1080/0886022x.2022.2056053
摘要

Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) and is associated with increased morbidity and mortality in patients with diabetes. Identification of risk factors involved in the progression of DKD to ESRD is expected to result in early detection and appropriate intervention and improve prognosis. Therefore, this study aimed to establish a risk prediction model for ESRD resulting from DKD in patients with type 2 diabetes mellitus (T2DM).Between January 2008 and July 2019, a total of 390 Chinese patients with T2DM and DKD confirmed by percutaneous renal biopsy were enrolled and followed up for at least 1 year. Four machine learning algorithms (gradient boosting machine, support vector machine, logistic regression, and random forest (RF)) were used to identify the critical clinical and pathological features and to build a risk prediction model for ESRD.There were 158 renal outcome events (ESRD) (40.51%) during the 3-year median follow up. The RF algorithm showed the best performance at predicting progression to ESRD, showing the highest AUC (0.90) and ACC (82.65%). The RF algorithm identified five major factors: Cystatin-C, serum albumin (sAlb), hemoglobin (Hb), 24-hour urine urinary total protein, and estimated glomerular filtration rate. A nomogram according to the aforementioned five predictive factors was constructed to predict the incidence of ESRD.Machine learning algorithms can efficiently predict the incident ESRD in DKD participants. Compared with the previous models, the importance of sAlb and Hb were highlighted in the current model.HighlightsWhat is already known? Identification of risk factors for the progression of DKD to ESRD is expected to improve the prognosis by early detection and appropriate intervention.What this study has found? Machine learning algorithms were used to construct a risk prediction model of ESRD in patients with T2DM and DKD. The major predictive factors were found to be CysC, sAlb, Hb, eGFR, and UTP.What are the implications of the study? In contrast with the treatment of participants with early-phase T2DM with or without mild kidney damage, major emphasis should be placed on indicators of kidney function, nutrition, anemia, and proteinuria for participants with T2DM and advanced DKD to delay ESRD, rather than age, sex, and control of hypertension and glycemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
都是发布了新的文献求助10
刚刚
1秒前
小鲨鱼完成签到,获得积分10
1秒前
re完成签到,获得积分10
1秒前
NIUB发布了新的文献求助10
2秒前
美女子发布了新的文献求助10
2秒前
沈昊完成签到,获得积分10
2秒前
Ava应助杨九斤Jenney采纳,获得10
3秒前
3秒前
4秒前
4秒前
李李完成签到,获得积分10
4秒前
4秒前
刘MX完成签到 ,获得积分10
4秒前
余生发布了新的文献求助10
5秒前
lxl完成签到,获得积分20
6秒前
pcr163应助Ding采纳,获得100
6秒前
6秒前
852应助LSY采纳,获得10
6秒前
嘎嘎乐发布了新的文献求助10
7秒前
团子发布了新的文献求助10
7秒前
情怀应助青豆采纳,获得10
7秒前
Drvictor完成签到,获得积分10
8秒前
9秒前
怡然尔芙发布了新的文献求助10
9秒前
mikasa发布了新的文献求助10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
干净海亦发布了新的文献求助10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得20
10秒前
一一应助科研通管家采纳,获得20
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得20
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123986
求助须知:如何正确求助?哪些是违规求助? 2774419
关于积分的说明 7722418
捐赠科研通 2429958
什么是DOI,文献DOI怎么找? 1290833
科研通“疑难数据库(出版商)”最低求助积分说明 621957
版权声明 600283