Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease

医学 算法 终末期肾病 糖尿病 逻辑回归 列线图 2型糖尿病 内科学 肾功能 2型糖尿病 肾脏疾病 接收机工作特性 机器学习 疾病 内分泌学 计算机科学
作者
Yutong Zou,Lijun Zhao,Junlin Zhang,Yi-Ting Wang,Yucheng Wu,Honghong Ren,Tingli Wang,Rui Zhang,Jiali Wang,Yuancheng Zhao,Chunmei Qin,Huan Xu,Lin Li,Zhonglin Chai,Mark E. Cooper,Nanwei Tong,Fang Liu
出处
期刊:Renal Failure [Taylor & Francis]
卷期号:44 (1): 562-570 被引量:34
标识
DOI:10.1080/0886022x.2022.2056053
摘要

Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) and is associated with increased morbidity and mortality in patients with diabetes. Identification of risk factors involved in the progression of DKD to ESRD is expected to result in early detection and appropriate intervention and improve prognosis. Therefore, this study aimed to establish a risk prediction model for ESRD resulting from DKD in patients with type 2 diabetes mellitus (T2DM).Between January 2008 and July 2019, a total of 390 Chinese patients with T2DM and DKD confirmed by percutaneous renal biopsy were enrolled and followed up for at least 1 year. Four machine learning algorithms (gradient boosting machine, support vector machine, logistic regression, and random forest (RF)) were used to identify the critical clinical and pathological features and to build a risk prediction model for ESRD.There were 158 renal outcome events (ESRD) (40.51%) during the 3-year median follow up. The RF algorithm showed the best performance at predicting progression to ESRD, showing the highest AUC (0.90) and ACC (82.65%). The RF algorithm identified five major factors: Cystatin-C, serum albumin (sAlb), hemoglobin (Hb), 24-hour urine urinary total protein, and estimated glomerular filtration rate. A nomogram according to the aforementioned five predictive factors was constructed to predict the incidence of ESRD.Machine learning algorithms can efficiently predict the incident ESRD in DKD participants. Compared with the previous models, the importance of sAlb and Hb were highlighted in the current model.HighlightsWhat is already known? Identification of risk factors for the progression of DKD to ESRD is expected to improve the prognosis by early detection and appropriate intervention.What this study has found? Machine learning algorithms were used to construct a risk prediction model of ESRD in patients with T2DM and DKD. The major predictive factors were found to be CysC, sAlb, Hb, eGFR, and UTP.What are the implications of the study? In contrast with the treatment of participants with early-phase T2DM with or without mild kidney damage, major emphasis should be placed on indicators of kidney function, nutrition, anemia, and proteinuria for participants with T2DM and advanced DKD to delay ESRD, rather than age, sex, and control of hypertension and glycemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bmt关闭了bmt文献求助
1秒前
所所应助wang采纳,获得10
1秒前
1秒前
asdfghjkl发布了新的文献求助10
2秒前
2秒前
刻苦的晓蕾完成签到,获得积分10
2秒前
zhl完成签到,获得积分10
2秒前
愛迪完成签到,获得积分10
3秒前
gy关闭了gy文献求助
3秒前
脆脆Shark完成签到,获得积分10
5秒前
坚强白凝完成签到,获得积分10
8秒前
9秒前
zho发布了新的文献求助10
9秒前
chizhi完成签到,获得积分10
11秒前
12秒前
希望天下0贩的0应助花花采纳,获得10
12秒前
q792309106发布了新的文献求助10
13秒前
小马甲应助杜兰特采纳,获得10
15秒前
CipherSage应助zxcv采纳,获得10
15秒前
16秒前
天天快乐应助安生生采纳,获得10
17秒前
小马宝莉完成签到,获得积分10
20秒前
思源应助曹松柏采纳,获得10
20秒前
21秒前
田様应助a123采纳,获得10
22秒前
小新发布了新的文献求助20
23秒前
23秒前
核桃发布了新的文献求助10
25秒前
25秒前
26秒前
26秒前
阔达冰兰发布了新的文献求助10
27秒前
27秒前
28秒前
中和皇极应助曹沛岚采纳,获得10
29秒前
安生生发布了新的文献求助10
29秒前
花花发布了新的文献求助10
30秒前
杜兰特发布了新的文献求助10
31秒前
32秒前
阿槿发布了新的文献求助20
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702