YOLO5-spear: A robust and real-time spear tips locator by improving image augmentation and lightweight network for selective harvesting robot of white asparagus

人工智能 计算机视觉 计算机科学 工程类 模拟 地理 考古
作者
Ping Zhang,Xuemei Liu,Jin Yuan,Chengliang Liu
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:218: 43-61 被引量:16
标识
DOI:10.1016/j.biosystemseng.2022.04.006
摘要

The characteristics of underground cultivation have posed a challenge to the development of white asparagus selective harvesting robot. Because the ridge surface is mixed with soil particles and has a complex background including variable soil moisture and illumination, detecting and locating spear tips rapidly and accurately is a key difficulty. To address this problem, image augmentation is applied firstly to extract spear tip patches from the harvesting area image in actual scenarios to form a multi-scale combined image, and then processed with proposed resampling-based image transformation, such as illumination, rotation, mirror, motion blur, and shadow. Secondly, a model referred to as YOLO5-Spear is proposed to detect spear tips by replacing C3 and Conv of YOLO5 with LC3 (Light C3) and DWConv (Depthwise-separable Convolution) and by adding the SE (Squeeze-and-Excitation) module to improve both the detection speed and accuracy. Finally, the model is deployed on embedded devices as a spear tips locator for a selective harvesting robot. The results showed that YOLO5-Spear achieved 97.8% at AP0.5, 2.4% higher than YOLO5. Moreover, its parameters, computation, model size, and detection time were reduced by 51.3%, 33.7%, 50.3%, and 18.2%, respectively. Further, the average inference time on Jetson Nano decreased to 63 ms, which meets the requirement for real-time performance of robotic harvesting. Compared with YOLO4-scaled, YOLO5-Spear increased accuracy by a maximum of 31.4%, was nearly 5 times faster, and reduced the model size by 94.9%. Localisation accuracy in different scenarios offers directions to optimise robot design and planting patterns to reduce the complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的白竹完成签到,获得积分10
1秒前
2秒前
孤独箴言完成签到 ,获得积分10
6秒前
Lamis完成签到 ,获得积分10
9秒前
还行吧完成签到 ,获得积分10
9秒前
风起枫落完成签到 ,获得积分10
12秒前
西扬完成签到 ,获得积分10
12秒前
FashionBoy应助yqcj455采纳,获得10
13秒前
h w wang完成签到,获得积分10
17秒前
17秒前
LingYun完成签到,获得积分10
19秒前
21秒前
xixi很困完成签到 ,获得积分10
26秒前
阳炎完成签到,获得积分10
26秒前
yqcj455发布了新的文献求助10
27秒前
xf完成签到,获得积分10
28秒前
innocent发布了新的文献求助10
28秒前
lxgz完成签到 ,获得积分10
31秒前
科研通AI2S应助LingYun采纳,获得10
32秒前
33秒前
coven完成签到,获得积分10
34秒前
yqcj455完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
ypp完成签到,获得积分10
37秒前
火星人完成签到 ,获得积分10
38秒前
dong完成签到 ,获得积分0
38秒前
lindoudou发布了新的文献求助10
40秒前
gougou完成签到,获得积分10
41秒前
风清扬应助金枪鱼子采纳,获得10
46秒前
zzh完成签到 ,获得积分10
50秒前
研友_85YNe8完成签到,获得积分10
50秒前
娟娟完成签到 ,获得积分10
50秒前
WSY完成签到 ,获得积分10
52秒前
打地鼠工人完成签到,获得积分10
54秒前
59秒前
高高从霜完成签到 ,获得积分10
1分钟前
木光完成签到,获得积分10
1分钟前
benzene完成签到 ,获得积分10
1分钟前
顺利的乐枫完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015