YOLO5-spear: A robust and real-time spear tips locator by improving image augmentation and lightweight network for selective harvesting robot of white asparagus

人工智能 计算机视觉 计算机科学 工程类 模拟 地理 考古
作者
Ping Zhang,Xuemei Liu,Jin Yuan,Chengliang Liu
出处
期刊:Biosystems Engineering [Elsevier]
卷期号:218: 43-61 被引量:16
标识
DOI:10.1016/j.biosystemseng.2022.04.006
摘要

The characteristics of underground cultivation have posed a challenge to the development of white asparagus selective harvesting robot. Because the ridge surface is mixed with soil particles and has a complex background including variable soil moisture and illumination, detecting and locating spear tips rapidly and accurately is a key difficulty. To address this problem, image augmentation is applied firstly to extract spear tip patches from the harvesting area image in actual scenarios to form a multi-scale combined image, and then processed with proposed resampling-based image transformation, such as illumination, rotation, mirror, motion blur, and shadow. Secondly, a model referred to as YOLO5-Spear is proposed to detect spear tips by replacing C3 and Conv of YOLO5 with LC3 (Light C3) and DWConv (Depthwise-separable Convolution) and by adding the SE (Squeeze-and-Excitation) module to improve both the detection speed and accuracy. Finally, the model is deployed on embedded devices as a spear tips locator for a selective harvesting robot. The results showed that YOLO5-Spear achieved 97.8% at AP0.5, 2.4% higher than YOLO5. Moreover, its parameters, computation, model size, and detection time were reduced by 51.3%, 33.7%, 50.3%, and 18.2%, respectively. Further, the average inference time on Jetson Nano decreased to 63 ms, which meets the requirement for real-time performance of robotic harvesting. Compared with YOLO4-scaled, YOLO5-Spear increased accuracy by a maximum of 31.4%, was nearly 5 times faster, and reduced the model size by 94.9%. Localisation accuracy in different scenarios offers directions to optimise robot design and planting patterns to reduce the complexity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的凝安完成签到,获得积分10
刚刚
cc完成签到 ,获得积分10
1秒前
深情安青应助aeolianbells采纳,获得10
3秒前
LC发布了新的文献求助10
4秒前
xbcl完成签到 ,获得积分10
5秒前
GB完成签到 ,获得积分10
5秒前
研友_X89J6L完成签到,获得积分10
5秒前
了凡完成签到 ,获得积分10
5秒前
酷波er应助可爱冰绿采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
安详的夜春完成签到,获得积分10
9秒前
hchnb1234完成签到 ,获得积分10
11秒前
烟泽亮完成签到,获得积分10
12秒前
怕黑的海安完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
15秒前
秋殇浅寞完成签到,获得积分10
15秒前
秋殇浅寞发布了新的文献求助10
18秒前
FYW发布了新的文献求助20
19秒前
w。发布了新的文献求助10
19秒前
22秒前
dfggg发布了新的文献求助100
23秒前
fcycukvujblk完成签到,获得积分10
23秒前
桔子发布了新的文献求助10
24秒前
emilybei发布了新的文献求助10
24秒前
25秒前
27秒前
睡不醒的xx完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
重要的静柏完成签到 ,获得积分10
28秒前
HH发布了新的文献求助10
29秒前
木子完成签到,获得积分10
31秒前
31秒前
31秒前
王雨晨完成签到 ,获得积分10
32秒前
32秒前
dfggg完成签到,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598711
求助须知:如何正确求助?哪些是违规求助? 4684157
关于积分的说明 14833941
捐赠科研通 4664558
什么是DOI,文献DOI怎么找? 2537377
邀请新用户注册赠送积分活动 1504904
关于科研通互助平台的介绍 1470606