A deep neural networks-based fusion model for COVID-19 rumor detection from online social media

谣言 微博 社会化媒体 计算机科学 网络爬虫 独创性 2019年冠状病毒病(COVID-19) 人工智能 主题模型 数据科学 情报检索 机器学习 万维网 社会学 创造力 医学 政治学 疾病 传染病(医学专业) 社会科学 法学 定性研究 公共关系 病理
作者
Hengyang Lu,Jing Yang,Wei Fang,Xiaoning Song,Chongjun Wang
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:56 (5): 806-824 被引量:1
标识
DOI:10.1108/dta-06-2021-0160
摘要

Purpose The COVID-19 has become a global pandemic, which has caused large number of deaths and huge economic losses. These losses are not only caused by the virus but also by the related rumors. Nowadays, online social media are quite popular, where billions of people express their opinions and propagate information. Rumors about COVID-19 posted on online social media usually spread rapidly; it is hard to analyze and detect rumors only by artificial processing. The purpose of this paper is to propose a novel model called the Topic-Comment-based Rumor Detection model (TopCom) to detect rumors as soon as possible. Design/methodology/approach The authors conducted COVID-19 rumor detection from Sina Weibo, one of the most widely used Chinese online social media. The authors constructed a dataset about COVID-19 from January 1 to June 30, 2020 with a web crawler, including both rumor and non-rumors. The rumor detection task is regarded as a binary classification problem. The proposed TopCom model exploits the topical memory networks to fuse latent topic information with original microblogs, which solves the sparsity problems brought by short-text microblogs. In addition, TopCom fuses comments with corresponding microblogs to further improve the performance. Findings Experimental results on a publicly available dataset and the proposed COVID dataset have shown superiority and efficiency compared with baselines. The authors further randomly selected microblogs posted from July 1–31, 2020 for the case study, which also shows the effectiveness and application prospects for detecting rumors about COVID-19 automatically. Originality/value The originality of TopCom lies in the fusion of latent topic information of original microblogs and corresponding comments with DNNs-based models for the COVID-19 rumor detection task, whose value is to help detect rumors automatically in a short time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
耶耶发布了新的文献求助10
刚刚
hannuannuan发布了新的文献求助10
刚刚
NexusExplorer应助小吉麻麻采纳,获得10
1秒前
郑小传完成签到,获得积分10
1秒前
思源应助子姜采纳,获得10
1秒前
pinkangel发布了新的文献求助100
2秒前
njc完成签到,获得积分10
3秒前
邵璞完成签到,获得积分10
3秒前
五六完成签到,获得积分10
4秒前
4秒前
5秒前
Jolin完成签到,获得积分10
5秒前
zc完成签到,获得积分10
6秒前
ANY发布了新的文献求助30
6秒前
充电宝应助Damy采纳,获得10
6秒前
宋祝福发布了新的文献求助10
7秒前
喻箴完成签到,获得积分10
7秒前
7秒前
coco完成签到,获得积分10
7秒前
8秒前
小杭76发布了新的文献求助10
9秒前
二十二关注了科研通微信公众号
9秒前
9秒前
丫丫完成签到,获得积分10
9秒前
9秒前
早起吃饱多运动完成签到 ,获得积分10
9秒前
科研通AI6应助qq大魔王采纳,获得10
10秒前
huhuan发布了新的文献求助10
10秒前
剑八发布了新的文献求助10
10秒前
yu完成签到,获得积分10
10秒前
zzzzlll完成签到,获得积分10
10秒前
柔弱藏鸟完成签到,获得积分10
12秒前
12秒前
碧蓝破茧完成签到,获得积分10
13秒前
ida完成签到,获得积分20
13秒前
hearin完成签到,获得积分10
13秒前
呃1399完成签到 ,获得积分10
13秒前
迷人的山柳完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490