亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm

医学 恶性肿瘤 放射科 神经组阅片室 逻辑回归 接收机工作特性 算法 无线电技术 磁共振成像 介入放射学 机器学习 人工智能 计算机科学 内科学 神经学 精神科
作者
Jérémy Dana,Thierry Lefebvre,Peter Savadjiev,Sylvain Bodard,Simon Gauvin,Sahir Bhatnagar,Reza Forghani,O. Hélénon,Caroline Reinhold
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (6): 4116-4127 被引量:17
标识
DOI:10.1007/s00330-021-08449-w
摘要

To distinguish benign from malignant cystic renal lesions (CRL) using a contrast-enhanced CT-based radiomics model and a clinical decision algorithm.This dual-center retrospective study included patients over 18 years old with CRL between 2005 and 2018. The reference standard was histopathology or 4-year imaging follow-up. Training and testing datasets were acquired from two institutions. Quantitative 3D radiomics analyses were performed on nephrographic phase CT images. Ten-fold cross-validated LASSO regression was applied to the training dataset to identify the most discriminative features. A logistic regression model was trained to classify malignancy and tested on the independent dataset. Reported metrics included areas under the receiver operating characteristic curves (AUC) and balanced accuracy. Decision curve analysis for stratifying patients for surgery was performed in the testing dataset. A decision algorithm was built by combining consensus radiological readings of Bosniak categories and radiomics-based risks.A total of 149 CRL (139 patients; 65 years [56-72]) were included in the training dataset-35 Bosniak(B)-IIF (8.6% malignancy), 23 B-III (43.5%), and 23 B-IV (87.0%)-and 50 CRL (46 patients; 61 years [51-68]) in the testing dataset-12 B-IIF (8.3%), 10 B-III (60.0%), and 9 B-IV (100%). The machine learning model achieved high diagnostic performance in predicting malignancy in the testing dataset (AUC = 0.96; balanced accuracy = 94%). There was a net benefit across threshold probabilities in using the clinical decision algorithm over management guidelines based on Bosniak categories.CT-based radiomics modeling accurately distinguished benign from malignant CRL, outperforming the Bosniak classification. The decision algorithm best stratified lesions for surgery and active surveillance.• The radiomics model achieved excellent diagnostic performance in identifying malignant cystic renal lesions in an independent testing dataset (AUC = 0.96). • The machine learning-enhanced decision algorithm outperformed the management guidelines based on the Bosniak classification for stratifying patients to surgical ablation or active surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
zhaozhao完成签到 ,获得积分10
3分钟前
冷傲渊思完成签到,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
3分钟前
3分钟前
上官若男应助安之若素采纳,获得10
4分钟前
Perry完成签到,获得积分10
4分钟前
咕咕咕咕发布了新的文献求助30
4分钟前
咕咕咕咕完成签到,获得积分10
4分钟前
安之若素完成签到,获得积分20
4分钟前
5分钟前
安之若素发布了新的文献求助10
5分钟前
6分钟前
gszy1975发布了新的文献求助10
6分钟前
大喜子完成签到 ,获得积分10
8分钟前
科研通AI2S应助欣喜若灵采纳,获得10
8分钟前
9分钟前
欣喜若灵发布了新的文献求助10
9分钟前
赘婿应助krajicek采纳,获得30
9分钟前
10分钟前
Mayer1234088发布了新的文献求助10
10分钟前
10分钟前
krajicek发布了新的文献求助30
10分钟前
11分钟前
liufinity发布了新的文献求助10
11分钟前
柿饼完成签到,获得积分10
11分钟前
英俊的铭应助liufinity采纳,获得10
11分钟前
11分钟前
krajicek发布了新的文献求助10
11分钟前
大个应助科研通管家采纳,获得10
12分钟前
小马甲应助科研通管家采纳,获得30
12分钟前
雪糕考研完成签到 ,获得积分10
12分钟前
12分钟前
liufinity发布了新的文献求助10
12分钟前
沧海云完成签到 ,获得积分10
12分钟前
Akim应助EmmaZ采纳,获得10
14分钟前
Frank应助地尔硫卓采纳,获得50
14分钟前
14分钟前
EmmaZ发布了新的文献求助10
14分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463950
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853