医学
恶性肿瘤
放射科
神经组阅片室
逻辑回归
接收机工作特性
算法
无线电技术
磁共振成像
介入放射学
机器学习
人工智能
计算机科学
内科学
神经学
精神科
作者
Jérémy Dana,Thierry Lefebvre,Peter Savadjiev,Sylvain Bodard,Simon Gauvin,Sahir Bhatnagar,Reza Forghani,O. Hélénon,Caroline Reinhold
标识
DOI:10.1007/s00330-021-08449-w
摘要
To distinguish benign from malignant cystic renal lesions (CRL) using a contrast-enhanced CT-based radiomics model and a clinical decision algorithm.This dual-center retrospective study included patients over 18 years old with CRL between 2005 and 2018. The reference standard was histopathology or 4-year imaging follow-up. Training and testing datasets were acquired from two institutions. Quantitative 3D radiomics analyses were performed on nephrographic phase CT images. Ten-fold cross-validated LASSO regression was applied to the training dataset to identify the most discriminative features. A logistic regression model was trained to classify malignancy and tested on the independent dataset. Reported metrics included areas under the receiver operating characteristic curves (AUC) and balanced accuracy. Decision curve analysis for stratifying patients for surgery was performed in the testing dataset. A decision algorithm was built by combining consensus radiological readings of Bosniak categories and radiomics-based risks.A total of 149 CRL (139 patients; 65 years [56-72]) were included in the training dataset-35 Bosniak(B)-IIF (8.6% malignancy), 23 B-III (43.5%), and 23 B-IV (87.0%)-and 50 CRL (46 patients; 61 years [51-68]) in the testing dataset-12 B-IIF (8.3%), 10 B-III (60.0%), and 9 B-IV (100%). The machine learning model achieved high diagnostic performance in predicting malignancy in the testing dataset (AUC = 0.96; balanced accuracy = 94%). There was a net benefit across threshold probabilities in using the clinical decision algorithm over management guidelines based on Bosniak categories.CT-based radiomics modeling accurately distinguished benign from malignant CRL, outperforming the Bosniak classification. The decision algorithm best stratified lesions for surgery and active surveillance.• The radiomics model achieved excellent diagnostic performance in identifying malignant cystic renal lesions in an independent testing dataset (AUC = 0.96). • The machine learning-enhanced decision algorithm outperformed the management guidelines based on the Bosniak classification for stratifying patients to surgical ablation or active surveillance.
科研通智能强力驱动
Strongly Powered by AbleSci AI