期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers] 日期:2021-12-08卷期号:22 (3): 2419-2429被引量:7
标识
DOI:10.1109/jsen.2021.3133909
摘要
This paper proposes an efficient interference fringe suppression method for the oxygen concentration measurement system by adopting emerging machine learning techniques. First, the interfered and interference-free signal datasets are generated on HITRAN molecular spectroscopic database after a transmission factor is considered in the wavelength-modulation-based TDLAS (TDLAS/WMS) theory. Then, an adaptive harmonic feeding generative adversarial network (AHFGAN) is developed to deal with the task of interference fringe suppression, where a novel adaptive weighted scheme is proposed to guide the weight learning process based on the data prior knowledge of dispersion degree refined from a large number of harmonic signals. Based on the AHFGAN, nearly perfect interference-free harmonic signals are directly learnt from the real-world TDLAS system, with an average absolute oxygen concentration inversion error of 0.57% when applied in an actual pharmaceutical production line, which performs better than other five recent state-of-the-arts.