Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDD发布了新的文献求助10
刚刚
传奇3应助叶宇豪采纳,获得10
2秒前
且做等春树完成签到,获得积分10
3秒前
3秒前
A666发布了新的文献求助10
3秒前
280应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
280应助科研通管家采纳,获得10
5秒前
nancy应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
盛小铃发布了新的文献求助10
8秒前
8秒前
9秒前
方方发布了新的文献求助10
9秒前
皛川完成签到,获得积分20
9秒前
10秒前
CD完成签到,获得积分10
10秒前
11秒前
Ava应助糊涂的剑采纳,获得10
11秒前
Hunter发布了新的文献求助10
11秒前
12秒前
送你一匹马完成签到,获得积分10
12秒前
搜集达人应助lingxu采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
DDD完成签到,获得积分10
17秒前
糊涂的剑完成签到,获得积分10
17秒前
xu给细胞在江山在的求助进行了留言
17秒前
兔子发布了新的文献求助10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632465
求助须知:如何正确求助?哪些是违规求助? 4726925
关于积分的说明 14982122
捐赠科研通 4790432
什么是DOI,文献DOI怎么找? 2558280
邀请新用户注册赠送积分活动 1518679
关于科研通互助平台的介绍 1479141