Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
可爱的坤发布了新的文献求助20
10秒前
11秒前
13秒前
橙子完成签到 ,获得积分10
13秒前
HENHer关注了科研通微信公众号
14秒前
15秒前
15秒前
JamesPei应助Joker采纳,获得10
16秒前
17秒前
耍酷发布了新的文献求助20
17秒前
jiaheyuan发布了新的文献求助10
18秒前
18秒前
JamesPei应助Hhh采纳,获得10
18秒前
量子星尘发布了新的文献求助10
21秒前
充电宝应助壮观的凝阳采纳,获得10
21秒前
Luuu关注了科研通微信公众号
22秒前
25秒前
27秒前
小二郎应助michen采纳,获得10
27秒前
28秒前
28秒前
雾里看花水中望月完成签到,获得积分20
28秒前
28秒前
wzy发布了新的文献求助10
28秒前
yjf,123发布了新的文献求助10
29秒前
29秒前
29秒前
29秒前
30秒前
执着幻桃完成签到,获得积分10
30秒前
阆州发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031