Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
二枫忆桑完成签到,获得积分10
1秒前
田様应助勤奋的一刀采纳,获得10
2秒前
隐形曼青应助派大星采纳,获得10
2秒前
贝贝贝贝贝贝舒适的休息下完成签到 ,获得积分10
3秒前
SYLH应助巧兮采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Han发布了新的文献求助30
5秒前
5秒前
Zzzzzzz发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
7秒前
玩命做科研完成签到,获得积分10
8秒前
bkagyin应助朴素的曼易采纳,获得10
9秒前
昵称发布了新的文献求助10
9秒前
kyt完成签到,获得积分10
10秒前
超级老三发布了新的文献求助10
11秒前
hello完成签到,获得积分10
11秒前
空空发布了新的文献求助10
11秒前
12秒前
王木木发布了新的文献求助10
13秒前
杰尼龟完成签到,获得积分10
13秒前
14秒前
14秒前
鬼火完成签到,获得积分10
15秒前
脑洞疼应助桉韵沁采纳,获得10
15秒前
Hh发布了新的文献求助10
16秒前
年轻的仙人掌完成签到,获得积分10
17秒前
18秒前
yizhi发布了新的文献求助10
19秒前
wangyr11完成签到,获得积分10
21秒前
66m37发布了新的文献求助10
22秒前
22秒前
半两月光发布了新的文献求助10
22秒前
23秒前
yznfly应助无助的人采纳,获得50
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350