Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿空完成签到 ,获得积分10
1秒前
聪明海云完成签到,获得积分10
2秒前
2秒前
4秒前
shine完成签到,获得积分10
4秒前
gao发布了新的文献求助10
5秒前
5秒前
mengtingmei应助1130311采纳,获得10
5秒前
周至发布了新的文献求助10
6秒前
FU_kyt完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
小心超人发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
研友_VZG7GZ应助C14yd3n采纳,获得10
10秒前
10秒前
1234sxcv发布了新的文献求助10
12秒前
好吃的小米完成签到,获得积分10
13秒前
泽烺木完成签到,获得积分10
14秒前
15秒前
珈小羽完成签到,获得积分10
15秒前
zbj完成签到,获得积分10
16秒前
17秒前
17秒前
郭亮发布了新的文献求助10
17秒前
传奇3应助1234sxcv采纳,获得30
18秒前
CipherSage应助风中的芷蕾采纳,获得10
20秒前
白笙完成签到 ,获得积分10
20秒前
21秒前
无私小小完成签到,获得积分10
22秒前
ding应助仁爱嫣采纳,获得10
22秒前
尊敬兔子完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
shiyongkang1完成签到,获得积分20
24秒前
x小张发布了新的文献求助10
27秒前
Orange应助笑点低的泥猴桃采纳,获得10
27秒前
所所应助读书的时候采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932