Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暗中讨饭完成签到,获得积分20
刚刚
耍酷的徐坤完成签到,获得积分10
1秒前
可爱的函函应助小伙伴采纳,获得10
1秒前
漫漫完成签到,获得积分20
1秒前
2秒前
tingalan应助咦哈哈哈采纳,获得10
2秒前
李健应助咦哈哈哈采纳,获得10
2秒前
2秒前
huahua发布了新的文献求助10
2秒前
2秒前
2秒前
寒冷的云朵完成签到,获得积分10
3秒前
大知闲闲完成签到,获得积分10
3秒前
霸气谷蕊完成签到,获得积分10
3秒前
认真的大楚完成签到,获得积分10
3秒前
3秒前
华仔应助jq采纳,获得10
4秒前
嘿嘿发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
浮一白完成签到,获得积分10
6秒前
ruby发布了新的文献求助10
6秒前
科研一号完成签到 ,获得积分10
6秒前
帅子发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
Nuyoah丶09发布了新的文献求助10
8秒前
8秒前
wyj发布了新的文献求助10
8秒前
老艺人发布了新的文献求助10
9秒前
大橘发布了新的文献求助30
9秒前
LILIYI发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003