🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新

Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques

铸造 材料科学 合金 Boosting(机器学习) 微观结构 计算机科学 机械工程 冶金 人工智能 工程类
作者
Yi Wang,Guangchen Liu,Jianbao Gao,Lijun Zhang
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:21
标识
DOI:10.20517/jmi.2021.10
摘要

Casting aluminum alloys are commonly used in industries due to their excellent comprehensive performance. Alloying/microalloying and post-solidification heat treatments are the most common measures to tune the microstructure for enhancing their mechanical properties. However, it is very challenging to achieve accurate and efficient development of novel casting aluminum alloys using the traditional trial-and-error method. With the rapid development of computer technology, the computational thermodynamics (CT) in the framework of the CALculation of PHAse Diagram approach, the data-driven machine learning (ML) technique, and also their combinations have been proved to be effective approaches for the design of casting aluminum alloys. In this review, the state-of-the-art computational alloy design approaches driven by CT and ML techniques, as well as their combinations, were comprehensively summarized. The current status of the thermodynamic database for aluminum alloys, as the core for CT, was also briefly introduced. After that, a variety of successful case studies on the design of different casting aluminum alloys driven by CT, ML, and their combinations were demonstrated, including common applications, CT-driven design of Sc-additional Al-Si-Mg series casting alloys, and design of Srmodified A356 alloys driven by combing CT and ML. Finally, the conclusions of this review were drawn, and perspectives for boosting the computational design approach driven by combining CT and ML techniques were pointed out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素夜梦发布了新的文献求助10
3秒前
科研通AI5应助shaco采纳,获得10
4秒前
李彪完成签到 ,获得积分10
4秒前
Akim应助孟长歌采纳,获得10
4秒前
852应助vic303采纳,获得10
5秒前
丛玉林发布了新的文献求助10
7秒前
难过的小甜瓜完成签到,获得积分10
8秒前
8秒前
8秒前
wen完成签到,获得积分20
9秒前
andy完成签到,获得积分20
10秒前
11秒前
caltrate515完成签到,获得积分10
11秒前
11秒前
shaco发布了新的文献求助10
12秒前
12秒前
FashionBoy应助wen采纳,获得10
13秒前
14秒前
黑咖啡完成签到,获得积分10
16秒前
往复发布了新的文献求助10
16秒前
16秒前
能干世界发布了新的文献求助10
16秒前
上好佳完成签到,获得积分10
17秒前
雨碎寒江发布了新的文献求助10
18秒前
黑暗系发布了新的文献求助10
18秒前
vic303发布了新的文献求助10
19秒前
我叫胖子发布了新的文献求助10
20秒前
ALVIN完成签到,获得积分10
20秒前
鱼缸完成签到,获得积分10
22秒前
potato_bel完成签到,获得积分10
22秒前
24秒前
科研通AI2S应助阿维里奥采纳,获得10
25秒前
26秒前
26秒前
丘比特应助振子采纳,获得10
26秒前
Doc邓爱科研完成签到,获得积分10
27秒前
28秒前
28秒前
我叫胖子完成签到,获得积分10
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
EEG in clinical practice 2nd edition 1994 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3605184
求助须知:如何正确求助?哪些是违规求助? 3173124
关于积分的说明 9577749
捐赠科研通 2879250
什么是DOI,文献DOI怎么找? 1581423
邀请新用户注册赠送积分活动 743609
科研通“疑难数据库(出版商)”最低求助积分说明 726076