层次聚类
聚类分析
计算机科学
网络的层次聚类
数据挖掘
棕色聚类
网格
分层数据库模型
实施
CURE数据聚类算法
相关聚类
机器学习
数学
几何学
程序设计语言
作者
Fionn Murtagh,Pedro Contreras
摘要
We survey agglomerative hierarchical clustering algorithms and discuss efficient implementations that are available in R and other software environments. We look at hierarchical self‐organizing maps and mixture models. We review grid‐based clustering, focusing on hierarchical density‐based approaches. Finally, we describe a recently developed very efficient (linear time) hierarchical clustering algorithm, which can also be viewed as a hierarchical grid‐based algorithm. This review adds to the earlier version, Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview, Wiley Interdiscip Rev: Data Mining Knowl Discov 2012, 2, 86–97. WIREs Data Mining Knowl Discov 2017, 7:e1219. doi: 10.1002/widm.1219 This article is categorized under: Algorithmic Development > Hierarchies and Trees Technologies > Classification Technologies > Structure Discovery and Clustering
科研通智能强力驱动
Strongly Powered by AbleSci AI