Industrial Process Monitoring Based on Dynamic Overcomplete Broad Learning Network

计算机科学 过程(计算) 非线性系统 特征(语言学) 机器学习 人工智能 故障检测与隔离 断层(地质) 数据挖掘 模式识别(心理学) 语言学 哲学 物理 量子力学 地震学 执行机构 地质学 操作系统
作者
Chang Peng,Ying Xu,Hu ZhiQi
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 1761-1772 被引量:4
标识
DOI:10.1109/tnnls.2022.3185167
摘要

Most industrial processes feature high nonlinearity, non-Gaussianity, and time correlation. Models based on overcomplete broad learning system (OBLS) have been successfully applied in the fault monitoring realm, which may relatively deal with the nonlinear and non-Gaussian characteristics. However, these models barely take time correlation into full consideration, hindering the further improvement of the monitoring accuracy of the network. Therefore, an effective dynamic overcomplete broad learning system (DOBLS) based on matrix extension is proposed, which extends the raw data in the batch process with the idea of "time lag" in this article. Subsequently, the OBLS monitoring network is employed to continue the analysis of the extended dynamic input data. Finally, a monitoring model is established to tackle the coexistence of nonlinearity, non-Gaussianity, and time correlation in process data. To illustrate the superiority and feasibility, the proposed model is conducted on the penicillin fermentation simulation platform, the experimental result of which illustrates that the model can extract the feature of process data more comprehensively and be self-updated more efficiently. With shorter training time and higher monitoring accuracy, the proposed model can witness an improvement of average monitoring accuracy by 3.69% and 1.26% in 26 process fault types compared to the state-of-the-art fault monitoring methods BLS and OBLS, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傢誠完成签到,获得积分10
3秒前
5秒前
。。。完成签到,获得积分10
10秒前
威武绿真完成签到,获得积分10
11秒前
大胆的弼完成签到,获得积分10
11秒前
aixiaoming0503完成签到,获得积分10
12秒前
13秒前
13秒前
刘企盼完成签到,获得积分10
16秒前
18秒前
南楼青主完成签到,获得积分10
20秒前
mgqqlwq完成签到,获得积分10
20秒前
21秒前
23秒前
彪壮的绮烟完成签到,获得积分10
24秒前
StayGolDay发布了新的文献求助10
26秒前
26秒前
zeno123456发布了新的文献求助30
27秒前
我是老大应助岁岁采纳,获得10
27秒前
勤恳诗筠发布了新的文献求助10
28秒前
打打应助科研通管家采纳,获得10
29秒前
斯文败类应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得10
29秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
zhiifanfan应助科研通管家采纳,获得30
30秒前
香蕉觅云应助科研通管家采纳,获得10
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
pluto应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
Ava应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775605
求助须知:如何正确求助?哪些是违规求助? 3321216
关于积分的说明 10204180
捐赠科研通 3036039
什么是DOI,文献DOI怎么找? 1665956
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766